

Heart Lake Road at Countryside Drive Schedule B Class Environmental Assessment Project Study Report - Volume II (Appendices) December 2022

MTE File No: 47877-100

Function and Design Review

Function and Design Review of Heart Lake Road Corridor

City of Brampton

Final Report - November 2019

FART LAKE

Revision	Description	Autho	or	Quality C	heck	Independent	Review
0A	Draft	I Hauzar	18/11/05				
		F Tomeo					
0B	Draft – Rev 1	F Tomeo	19/02/07				
		l Hauzar					
0C	Draft – Rev 2	l Hauzar	19/07/04				
0D	Final	B Orr	19/11/11	D Addley	19/11/28		

This document entitled Function and Design Review of the Heart Lake Road Corridor was prepared by Stantec Consulting Ltd. ("Stantec") for the account of City of Brampton (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Brandon Orr, BES, MCIP, RPP

Review by

(signature)

Diana Addley, MCIP, RPP

Table of Contents November 2019

Table of Contents

1.0	INTRODUCTION	1.1
2.0	CONTEXT AND STUDY PROCESS	2.1
2.1	CONTEXT	
2.2	STUDY PROCESS	2.1
3.0	TRANSPORTATION	
3.1	TRAFFIC	-
3.2	SAFETY	
3.3	SIGHT LINES	
3.4		
3.5	INFRASTRUCTURE CONDITIONS	
3.6	SUMMARY	3.34
4.0	ECOLOGY AND ENVIRONMENT	
4.1	BACKGROUND REVIEW	
4.2	NATURAL HERITAGE FEATURES	
4.3		
4.4	MITIGATION MEASURES	4.7
5.0	CULTURAL HERITAGE	5.1
5.1	SITE HISTORY	-
5.2	SUMMARY OF EVALUATION	
5.3	STATEMENT OF CULTURAL HERITAGE SIGNIFICANCE	
5.4	HERITAGE ATTRIBUTES	5.13
6.0	EVALUATION OF ALTERNATIVES	-
6.1	ROAD CLASSIFICATION	
6.2	CATEGORIES OF ALTERNATIVES	
6.3	LIST OF ALTERNATIVES	
6.4	EVALUATION CRITERIA	
6.5	EVALUATION MATRIX	6.14
7.0	PREFERRED ALTERNATIVE	7.1
7.1	SHORT TERM	
7.2	LONG TERM	
7.3	ECO-PASSAGES	
7.4	BUDGETARY COST ESTIMATES	7.7
8.0	CONCLUSION	8.1

Table of Contents November 2019

LIST OF TABLES

Table 1:	Existing Major Roadways in Study Area	3.1
Table 2:	Existing Transit Routes	
Table 3:	Existing Active Transportation Facilities	3.6
Table 4:	Existing Goods Movement Network Corridors	3.6
Table 5:	Growth Areas along the Heart Lake Road Corridor	
Table 6:	Brampton Regional Model - Travel Demand Forecast at Future Horizons on	
	Heart Lake Road – AM Peak	3.18
Table 7:	Planned Infrastructure Improvements	3.20
Table 8:	Total Yearly Collisions by Location	
Table 9:	Average Collision Rate by Survey Location	
Table 10:	Collision Classification by Intersection of Interest 2012 to 2017	
	Collision Data 2017-2018	
	Collision Type by Manoeuvre Type (Heart Lake Rd / Sandalwood Pkwy)	
	2012-2017	3.27
Table 13:	Total Collisions by Movements	
	Recommended Improvements at the Heart Lake Rd and Sandalwood	
	Parkway Intersection	3.29
Table 15:	Crossing Sight Distance	
	Left-Turning Departure Sight Triangles	
	Species of Conservation Concern that may be Present within the Heart	
	Lake Road Study Area	4.2
Table 18:	Effectiveness of Mitigation Measures on Speed observed on Heart Lake	
	Road	4.9
Table 19:	Criteria of Ontario Regulation 9/06 Compliance	
	Road Classification Criteria	
	Assessment of Active Transportation Alternatives	
	Assessment of Traffic Calming Alternatives	
	Assessment of Wildlife Treatment Alternatives	
	Evaluation Criteria and Factors Considered	
	Evaluation of Traffic Calming Alternatives	
	Evaluation of Wildlife Mortality Mitigation Alternatives	

Table of Contents November 2019

LIST OF FIGURES

Figure 1:	Focus Study Area	1.2
Figure 2:	Study Process	2.2
Figure 3:	Existing Land Use	3.3
Figure 4:	Existing Road Network	3.4
0	Existing Transit Network	
	Existing Active Transportation Network	
	Existing Commercial Vehicle Routes	
	Existing Weekday Traffic Volume Profile on Heart Lake Road	
	Existing Select Link Analysis @ Heart Lake Rd south of Countryside Dr -	
3	Demand 2016 / Network 2016 AM Peak	3.10
Figure 10:	Existing Select Link Analysis @ Heart Lake Rd south of Countryside Dr -	
U	Demand 2016 / Network 2016 PM Peak	3.11
Figure 11:	Existing Turning Movement Volumes – Weekday AM Peak Hour	3.12
	Existing Turning Movement Volumes – Weekday PM Peak Hour	
	Existing LOS and V/C Ratios – Weekday AM Peak Hour	
•	Existing LOS and V/C Ratios – Weekday PM Peak Hour	
•	Heart Lake Road, in front of Garden Gallery	
	Population & Employment Projections	
	Future Situation – Select Link Analysis @ Heart Lake Rd south of	
0	Countryside Dr 2041 AM Peak	3.21
Figure 18:	Future Situation – Select Link Analysis @ Heart Lake Rd south of	
0	Countryside Dr 2041 PM Peak	3.22
Figure 19:	Planned Infrastructure Improvements	
	Total Number of Collisions by Location	
•	Existing Conditions Typical Cross-Section	
	Desirable Bicycle Facility Pre-Selection Nomograph	
	Ecologic and Environmental Characteristics	
Figure 24:	:View Looking SE along Heart Lake Rd towards Sandalwood Pwy E	5.4
	View looking NW along Heart Lake Rd showing wetland (right) and treed	
-	ridge (left)	5.5
Figure 26:	View NW of Heart Lake Rd showing the Heart Lake Seventh Day Adventist	
-	Church (right) and treed ridge (left)	5.5
Figure 27:	NW View of Heart Lake Rd showing the Lakeside Garden Gallery (right)	5.5
Figure 28:	NW View of Heart Lake Rd showing wetland (right) and entrance to the	
	Heart Lake Conservation Area (left)	5.5
Figure 29:	Entrance to the Heart Lake	5.6
Figure 30:	Example of split rail fences located along Conservation Area	5.6
Figure 31:	NW View of Heart Lake Rd showing the lands within Metrus Developments	
	(Residential) parcel on the right	5.6
Figure 32:	SE View of Heart Lake Rd showing the lands within Metrus Developments	
	(Residential) parcel on the left. Note the remnant tree lines and driveway	5.6
Figure 33:	NW View towards Countryside Dr showing the lands within Metrus	
	Developments (Residential) parcel on the right	5.6
Figure 34:	Example of Tree Ridge/High Ground in the Heart Lake Conservation Area	
	on the west side of Heart Lake Road	
Figure 35:	:NE View of Rolling Agricultural	5.7

Table of Contents
November 2019

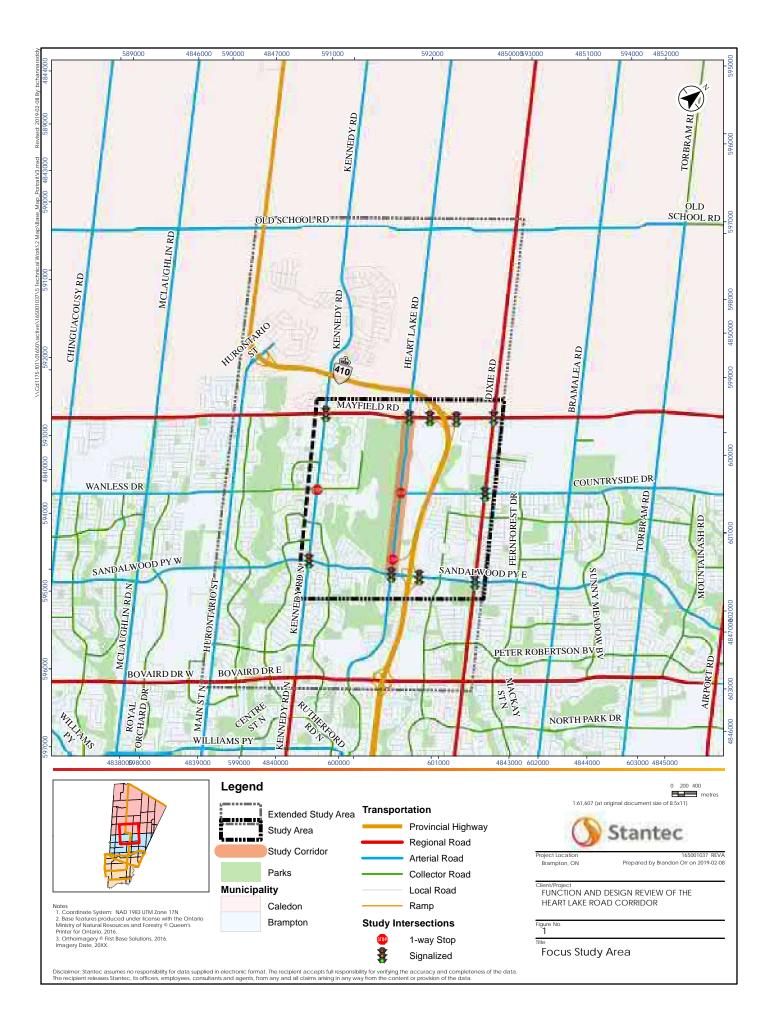
Figure 36:NW View of Heart Lake Road showing Lands included in the Emery	
Developments (Residential) Parcel (right)	.5.7
Figure 37:NW View of Heart Lake Rd showing Lands included in the Emery	
Developments (Residential) Parcel (right) and Khalsa School (far right)	.5.7
Figure 38: East View from Heart Lake Rd showing Lands included in the Khalsa	
School Parcel	.5.7
Figure 40:NW View of Heart Lake Rd	
Figure 39: East View of the Khalsa School Parcel	
Figure 41: Alternative 1.B Two Lanes with Paved Shoulders and Rumble Strips	
Figure 42: Alternative 1.C Two Lanes with Separated Bike Lanes	
Figure 43: Alternative 1.D Two Lanes with Separated Bi-directional Multi-Use Path	
on one side	.6.5
Figure 44: Alternative 1.E Narrow Roadway with Shared Roadway Markings and	
Signs	.6.5
Figure 45: Alternative 1.F Hybrid Multi-Use Trail in Heart Lake Conservation Area	.6.6
Figure 46: Alternative 1.G One-way Operation with Separated Bike Lanes	.6.6
Figure 47: Alternative 1.G Proposed Road Network	.6.7
Figure 48: Mini Roundabout Proposed at Access to HLCA	.6.7
Figure 49: Roundabout at Countryside Option 1 (with encroachment on TRCA lands)	.6.8
Figure 50: Roundabout at Countryside Option 2 (without encroachment on TRCA	
lands)	.6.8
Figure 51: StormTech Chambers	.7.2
Figure 52: Heart Lake Road Proposed Longitudinal Profile	.7.4
Figure 53: Cross-Sections of Proposed (2) Eco-Passages	.7.6

LIST OF APPENDICES

APPENDIX A	PUBLIC CONSULTATION	A.1
APPENDIX B	AGENCY CORRESPONDENCE	B.1
APPENDIX C	TURNING MOVEMENT COUNTS	C.1
APPENDIX D	SYNCHRO REPORTS	D.1
APPENDIX E	SANDALWOOD INTERSECTION/SAFETY REVIEW	E.1
APPENDIX F	GEOTECHNICAL REPORTS	F.1
APPENDIX G	HEART LAKE ROAD VOLUNTEER ECOLOGY MONITORING PROJECT, PHASES 1 AND 2	G.1
APPENDIX H	COST ESTIMATES	

Introduction November 2019

1.0 INTRODUCTION


In response to concerns regarding wildlife mortality and traffic operations, the City of Brampton commissioned Stantec to undertake a function and design review of the Heart Lake Road corridor within the City of Brampton.

The focus of this study is the Heart Lake Road corridor between Sandalwood Parkway to a point just north of Mayfield Road; however, the assessment of the transportation network and recommendations from this study extend beyond this focus area. **Figure 1** shows the study corridor and area.

The Heart Lake Road Transportation Study will deliver on the following objectives:

- Assess the feasibility of preserving the existing rural/cultural landscape character of Heart Lake Road given its Official Plan designation and function as a Minor Arterial Road and relevant Secondary Plan policies.
- Assess the current roadway structure and long-term function of Heart Lake Road with the intent of identifying opportunities to safely accommodate active transportation, while meeting other transportation demands.
- Review the roadway operational mitigating measures that have already been implemented with the intent to preserve and enhance the unique cultural heritage landscape and existing wildlife habitat along Heart Lake Road (i.e. naturalization, natural area /wildlife signage, road closures for seasonal migration periods and monitoring) and recommend improvements/enhancements.
- Review the road infrastructure improvements planned along Heart Lake Road which are intended to deter wildlife from crossing the road (i.e. wildlife eco-passage culvert and wildlife fencing) and recommend additional measures to enhance the proposed works.
- Examine the implications on land use, development, and transportation of listing Heart Lake Road under the Ontario Heritage Act as a Cultural Heritage Landscape and make appropriate recommendations in this regard.

Context and Study Process November 2019

2.0 CONTEXT AND STUDY PROCESS

2.1 CONTEXT

Historical evidence suggests that Heart Lake Road was a "corduroy log road" built in early to mid-1800s, traversing the Brampton Esker through wetlands, woodlands and wildlife habitat. In comparison to the majority of Brampton, very little active agriculture occurred along Heart Lake Road due to the significant natural constraints and unsuitable soil.

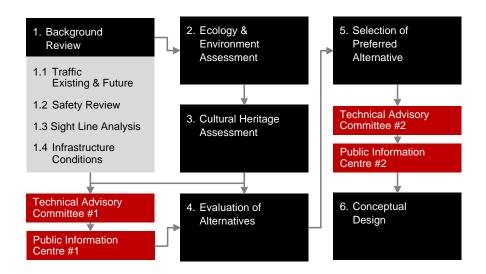
The largest land holding along the Heart Lake Road today is the Heart Lake Conservation Area (HLCA) owned by the Toronto and Region Conservation Authority (TRCA). Other development has been minimal, and comprises primarily older residential lots, a garden centre and a community organization headquarters. Between Heart Lake Road and Highway 410, previous agricultural lands are under application for development including employment, residential and institutional uses.

The primary concerns regarding Heart Lake Road relate to:

- Protection of the natural area adjacent to Heart Lake Road;
- Conservation of the cultural heritage landscape;
- Long range transportation planning; and
- Land use planning.

2.2 STUDY PROCESS

Figure 2 shows the process followed for this study, which includes two technical advisory committee (TAC) meetings and public information centres (PIC), each at the following milestones:


- After the background review, integrating components related to the ecological environment and cultural heritage; and
- After the evaluation of alternatives and selection of recommended alternative.

Copies of the information presented at PICs and associated notifications are provided in **Appendix A** of this report. Records correspondence with the TAC, including TRCA, are provided in **Appendix B**.

Context and Study Process November 2019

Figure 2: Study Process

Transportation November 2019

3.0 TRANSPORTATION

3.1 TRAFFIC

3.1.1 Existing Conditions

3.1.1.1 Land Use

Figure 3 shows the current land use along the Heart Lake Road corridor under study and the extended study area.

It should be noted that the HLCA, under the jurisdiction of the TRCA, is located on the west side of Heart Lake Road. HLCA occupies 169 hectares and contains two kettle lakes, the headwaters for Spring Creek, a Provincially Significant Wetland Complex and one of the largest individual blocks of forest in the Etobicoke Creek watershed.

3.1.1.2 Transportation Network

The existing transportation network consists of various multimodal facilities to provide local and regional travel options. The following section details the road network, transit network, active transportation routes, and commercial vehicle routes.

Road Network

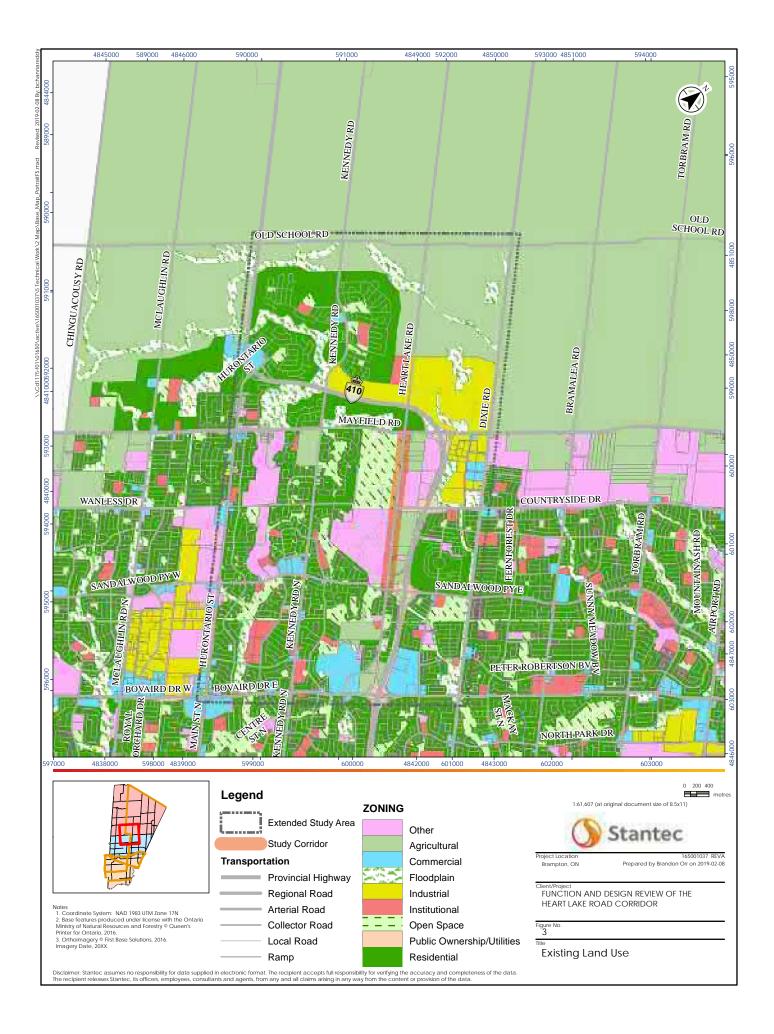
The road network around the Heart Lake Road corridor includes several major roadways that fall under Provincial, Regional, and municipal jurisdiction as summarized in **Table 1**. Highway 410, which is parallel and directly east of Heart Lake Road, provides regional connections as far north as the Bruce Peninsula, and the rest of the Greater Toronto and Hamilton Area to the south. Bovaird Drive is a 6-lane arterial roadway and Sandalwood Parkway is a 4-lane arterial with a short 6-lane section. Countryside Drive is a 4-lane arterial that connects to Heart Lake Road. Highway 410 off ramp connects directly to Heart Lake Road. Heart Lake Road is 2-lanes north of Sandalwood Parkway, and 4-lanes south of Sandalwood Parkway. Please refer to see **Figure 4** for a map of roadway hierarchy in relation to the study area.

Transit Services

The Heart Lake Road corridor study area is served by a mixture of local and regional bus services, primarily centred along Hurontario Street and Bovaird Drive. A portion of Heart Lake Road is serviced by Route 23 operated by Brampton Transit, between Bovaird Drive to Sandalwood Parkway. In general, most routes in the study area offer service all week with headways of 30 minutes or better during the peak periods with a few routes that operate at larger headways (50 minutes) and only provide weekday service (see **Table 2**). Please refer to **Figure 5** for a map of existing services in the study area.

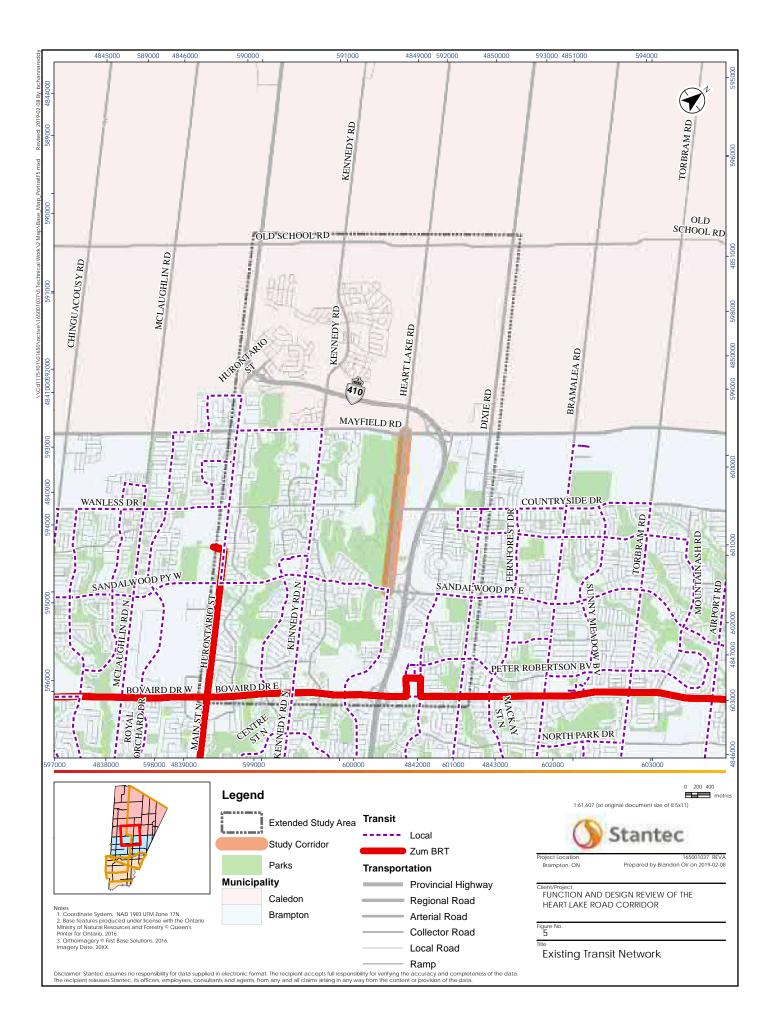
Roadway	# of Lanes	Туре	Jurisdiction
Hurontario St.	4	Major Arterial	Brampton
Kennedy Rd.	4	Major Arterial	Brampton
Heart Lake Rd. (HLR)	2 lanes north of Sandalwood Parkway; 4 lanes south of Sandalwood Parkway	Minor Arterial	Brampton
Countryside Drive	4	Minor Arterial	Brampton
Dixie Rd.	4	Regional Major Arterial	Peel

Table 1: Existing | Major Roadways in Study Area


Transportation November 2019

Roadway	# of Lanes	Туре	Jurisdiction
Bovaird Dr.	6	Regional Major Arterial	Peel
Sandalwood Pkwy	East of HLR: 6 West of HLR: 4	Major Arterial Brampton	
Conservation Dr.	2	Collector	Brampton
Mayfield Rd.	4	Regional Major Arterial	Peel
Old School Rd.	2	Arterial	Caledon
Hwy 410	4	Highway	МТО

Table 1: Existing | Major Roadways in Study Area


Table 2: Existing | Transit Routes

Route	Туре	Days of	Frequency (min)			
		Operation	АМ	Mid-Day	РМ	Off-Peak
2 – Main	Local	Mon-Sun	20	20	20	30
3 - McLaughlin	Local	Mon-Sun	15	30	10	25
5 - Bovaird	Local	Mon-Sun	10	20	15	30
7 - Kennedy	Local	Mon-Sun	7	15	7	20
17 – Howden	Local	Mon-Sun	20	40	20	40
18 - Dixie	Local	Mon-Sun	10	16	10	20
19 - Fernforest	Local	Mon-Sun	20	30	20	30
21 – Heart Lake	Local	Mon-Fri	50	N/A	50	50
23 - Sandalwood	Local	Mon-Sun	15	30	15	30
24 – Van Kirk	Local	Mon-Sun	30	30	30	60
32 – Father Tobin	Local	Mon-Sun	30	40	30	40
33 – Peter Robertson	Local	Mon-Sat	30	40	30	40
502 – Zum Main	BRT	Mon-Sun	8	10	8	20
505 – Zum Bovaird	BRT	Mon-Sun	14	20	15	20
37 – Orangeville/Brampton (GO)	Regional	Mon-Fri	50	N/A	50	N/A

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Transportation November 2019

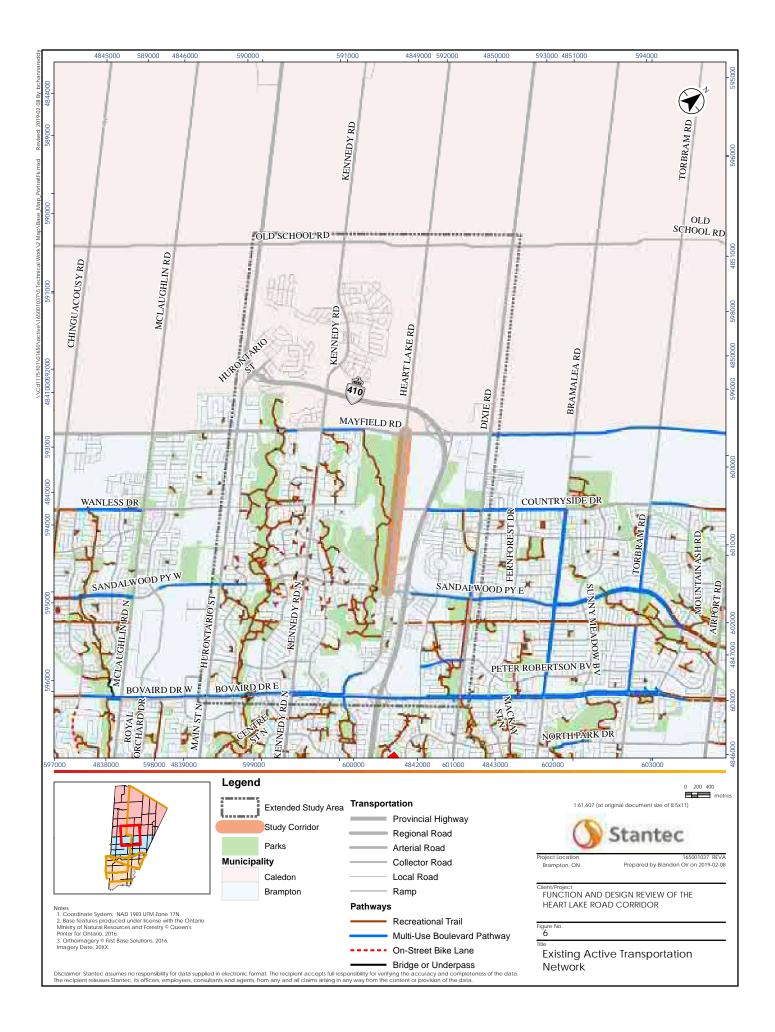
Active Transportation

The study area includes numerous off-road cycling paths providing connections throughout the City of Brampton. The HLCA, which is adjacent to Heart Lake Road, is connected via the Esker Lake Trail which extends from the conservation area at its northern terminus to Copperfield Road in the south. There are limited connections from Heart Lake Road to other active transportation trails for cross-town or regional connections, however several other trails and cycling paths are in proximity to the corridor such as the boulevard paths on Countryside Drive and Sandalwood Parkway east of Highway 410 (summarized in **Table 3**). **Figure 6** shows a map of existing active transportation facilities in the study area.

Name	Туре	
Esker Lake Recreational Trail	Off-Road Trail (City)	
Etobicoke Creek Recreational Trail	Off-Road Trail (City)	
Chingacousy Recreational Trail	Off-Road Trail (City)	
Flower City Recreational Trail	Off-Road Trail (City)	
Kennedy Rd.	Boulevard Path (City)	
Countryside Dr.	Boulevard Path (City)	
Sandalwood Pkwy	Boulevard Path (City)	
Bovaird Dr.	Boulevard Path (Region)	

Table 3: Existing | Active Transportation Facilities

Commercial Vehicles


Goods movement in the area is provided via Highway 410 and regional roadways as summarized in **Table 4**. Most collector roads in the area have truck restrictions as well as several arterial roads such as Kennedy Road (North of Bovaird Drive), Heart Lake Road, Bramalea Road, Torbram Road, and Sandalwood Parkway (see **Figure 7**).

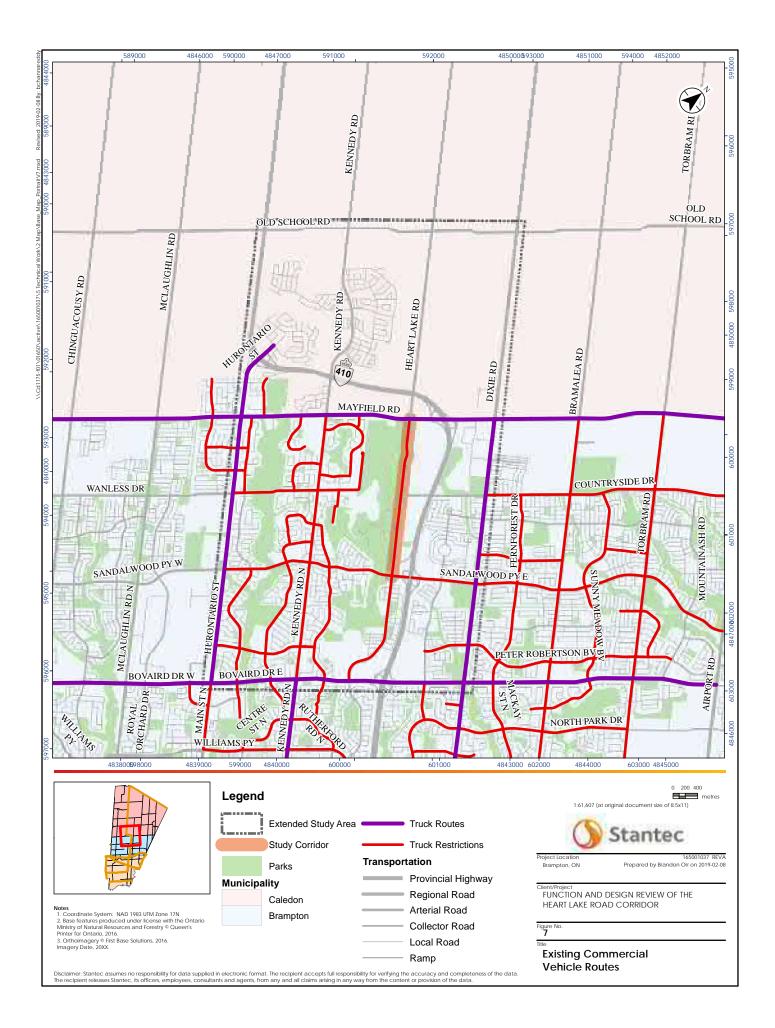

Corridor	Description	Туре	
Mayfield Rd.	Across the entire City	Primary Truck Route (Regional)	
Dixie Rd.	Mayfield Rd. to south of Hwy 407	Primary Truck Route (Regional)	
Bovaird Dr.	Across the entire City	Primary Truck Route (Regional)	
Kennedy Rd.	Bovaird Dr. to south of Hwy 407	Primary Truck Route (City)	
Hurontario St.	Mayfield Rd. to Bovaird Dr.	Potential City Truck Route	

Table 4: Existing | Goods Movement Network Corridors

As noted on **Figure 7**, truck traffic is prohibited on Heart Lake Road between Mayfield Road and Bovaird Drive. However, we note the following two issues which makes truck prohibition difficult to apply implying that despite the restriction on Heart Lake Road, trucks still use the road:

- Truck traffic is currently allowed on Countryside Drive between Dixie Road and Heart Lake Road; however, this will change in the near future. A sign will be placed that states "No Heavy Trucks, Anytime" in the future; and
- The Lakeside Garden Gallery is a generator of truck traffic because of delivery needs. It should be noted that there is a traffic by-law provision (Consolidated Traffic By-law 93-93) in place that allows trucks to use a road that is prohibited to trucks providing that they are engaged in making a delivery to or a collection from a premise which cannot be reached any other way.

Transportation November 2019

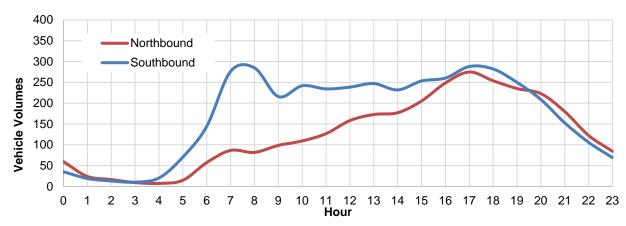

3.1.1.3 Travel Demand

Figure 9 and **Figure 10** show the path of drivers that are using Heart Lake Road and destined to/from a location south of Countryside Drive during the morning and afternoon weekday peak periods according to the regional travel demand model of the City of Brampton. It clearly shows that the travel demand on Heart Lake Road is in relation to trips from/to Countryside Drive. It also shows that people driving along Heart Lake Road travel up to King Street to the north (in Caledon) and beyond Highway 401 to the south.

3.1.1.4 Vehicular Traffic Conditions

Traffic Volumes

Figure 8 shows the hourly volume profile during a typical (24-hour) weekday between the Highway 410 off-ramp and Countryside Drive.

Note: Based on traffic counts conducted between July 27 and 29 + August 1, 2016

Figure 8 Existing | Weekday Traffic Volume Profile on Heart Lake Road

What emerges are the following:

- Although peaks are observed in the morning and in the afternoon, southbound traffic is relatively stable between 6:00 am and 7:00 pm, with volumes between 200 and 300 veh/hr;
- Northbound traffic peaks in the afternoon with volume exceeding 250 veh/hr;
- Maximum total volumes on Heart Lake Road are just over 500 veh/hr (pm peak hour); and
- Daily traffic is about 3,000 and 4,000 veh/day southbound and northbound respectively for a total of 7,000 veh/day.

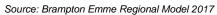
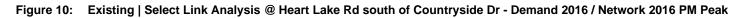

In addition to what is shown in **Figure 8**, it is noted that 2% of vehicles travelling on Heart Lake Road are trucks. Despite this not being a large proportion, it remains problematic as heavy vehicles are currently prohibited on Heart Lake Road. Trucks making local deliveries are permitted to use Heart Lake Road (in accordance with city by-law) provided that they are engaged in making a delivery or collecting a load from a location that cannot be reached any other way.

Figure 11 and **Figure 12** show the turning movement volumes at the intersections within the study area. On the Heart Lake Road corridor, the peak directional traffic flows (southbound in the morning and more proportionate equivalently in the afternoon) are usually around 300 – 350 veh/h north of the Highway 410 off-ramp that connects to Sandalwood Parkway. Between this ramp and Sandalwood Parkway, southbound traffic flows are above 700 veh/h in the morning while in the afternoon they are in the range of 400 and 300 veh/h going southbound and northbound respectively. For reference the traffic counts used are provided in **Appendix C**.

Transportation November 2019



Transportation November 2019

Source: Brampton Emme Regional Model 2017

Transportation November 2019

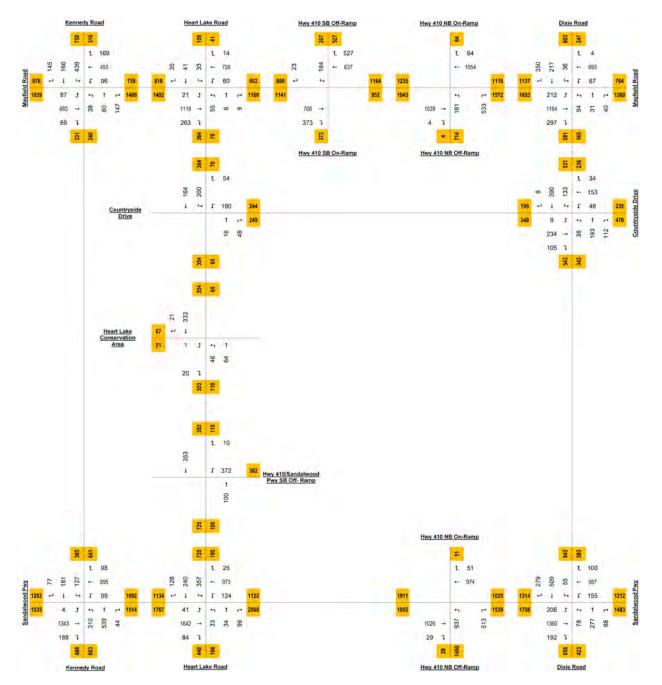


Figure 11: Existing | Turning Movement Volumes - Weekday AM Peak Hour

Transportation November 2019

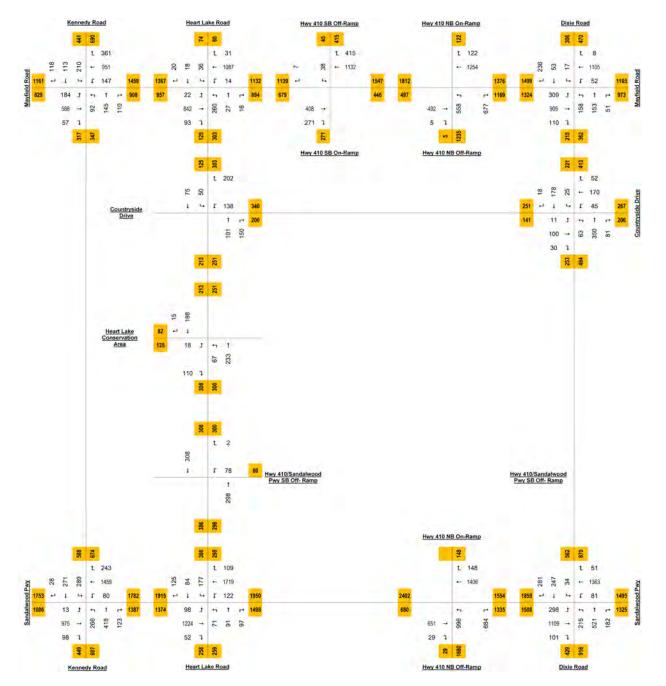


Figure 12: Existing | Turning Movement Volumes – Weekday PM Peak Hour

Transportation November 2019

Traffic Operations

The quality of intersection operations at signalized and unsignalized intersections is evaluated in terms of level of service (LOS) and volume to capacity (v/c) as defined by the Highway Capacity Manual (HCM). LOS is evaluated on the basis of average control delay per vehicle and includes deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Capacity is evaluated in terms of ratio of demand flow to capacity with an at-capacity condition represented by a v/c ratio of 1.00 (i.e. volume demand equals capacity). For signalized intersections LOS ranges from LOS A for 10 seconds or less average delay to LOS F for average delay greater than 80 seconds. For unsignalized intersections, the LOS ranges from LOS A for 10 seconds or less average delay to LOS F for average del

To assess the existing peak hour traffic conditions, a level of service analysis was undertaken for the study area intersections using Trafficware Synchro Software, which implements the methods of the 2000/2010 Highway Capacity Manual. The key parameters used in the analysis include:

- Existing lane configurations;
- Heavy vehicle percentages as derived from collected traffic count data;
- Calculated peak hour factors (PHFs). It is noted that this factor adjusts the hourly volumes to better represent conditions during the peak 15 minutes of intersection operations; and
- Synchro default values for all other inputs.

Figure 13 and **Figure 14** show the traffic conditions which are good on the Heart Lake Road corridor, with the exception of the intersection with Sandalwood Parkway whose capacity is limited during weekday peak periods. For reference, the Synchro reports are provided in **Appendix D**.

Transportation November 2019

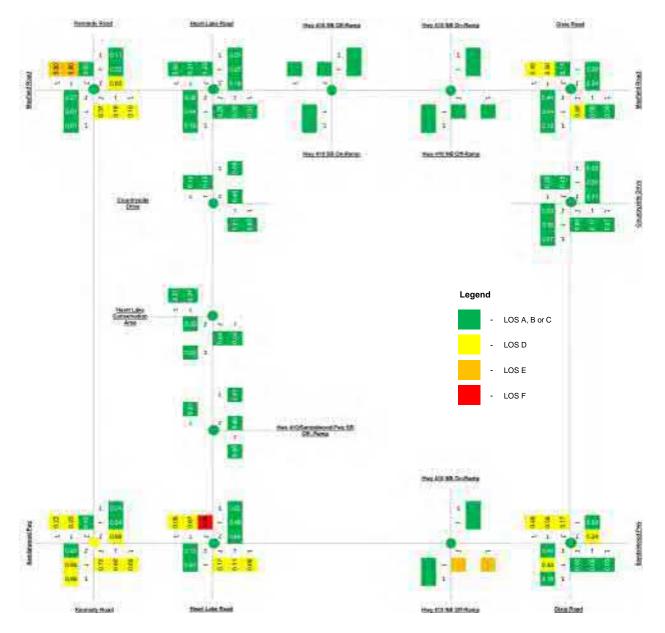
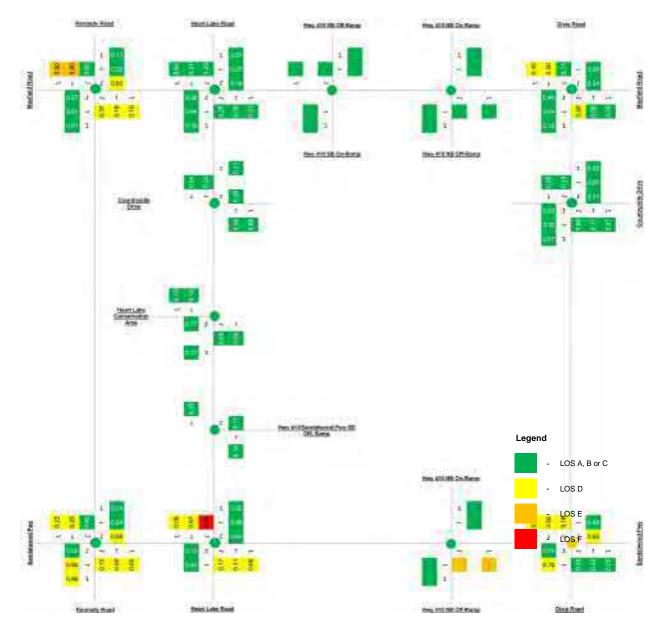
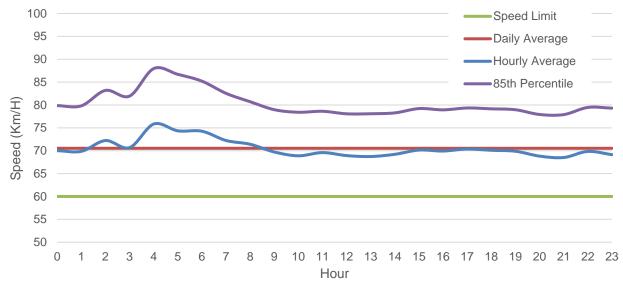


Figure 13: Existing | LOS and V/C Ratios – Weekday AM Peak Hour

Transportation November 2019




Figure 14: Existing | LOS and V/C Ratios – Weekday PM Peak Hour

Transportation November 2019

3.1.1.5 Speed

Figure 15 summarizes the speeds observed on Heart Lake Road in front of the Garden Gallery in comparison to the posted speed (60 km/hr).

Source: City of Brampton, 2017

Figure 15: Heart Lake Road, in front of Garden Gallery

What emerges from Figure 15, including the analysis of observed speeds, are the following:

- The average observed speed is 70 km/h;
- The 85th percentage speed is 79 km/h; and
- The speed limit compliance is only 11%.

The reasons for the low rate of compliances are:

- The corridor is relatively straight which makes it easy to drive at high speed;
- There are not many intersections (or interferences) on the corridor which could reduce speeds; and
- The traffic lanes are wide, which makes it comfortable to drive at high speeds.

Transportation November 2019

3.1.2 Future Conditions

3.1.2.1 Developments

Population and employment forecasts were prepared in February 2017 for the area surrounding the Heart Lake Road corridor. The forecasts were distributed into Small Geographic Units (SGUs), the most disaggregated geography available (see **Figure 16**). Although the magnitude of the development is significant, the anticipated transportation impacts are mostly along Hurontario Street, McLaughlin Road and Highway 410, and are not significant on the Heart Lake Road corridor.

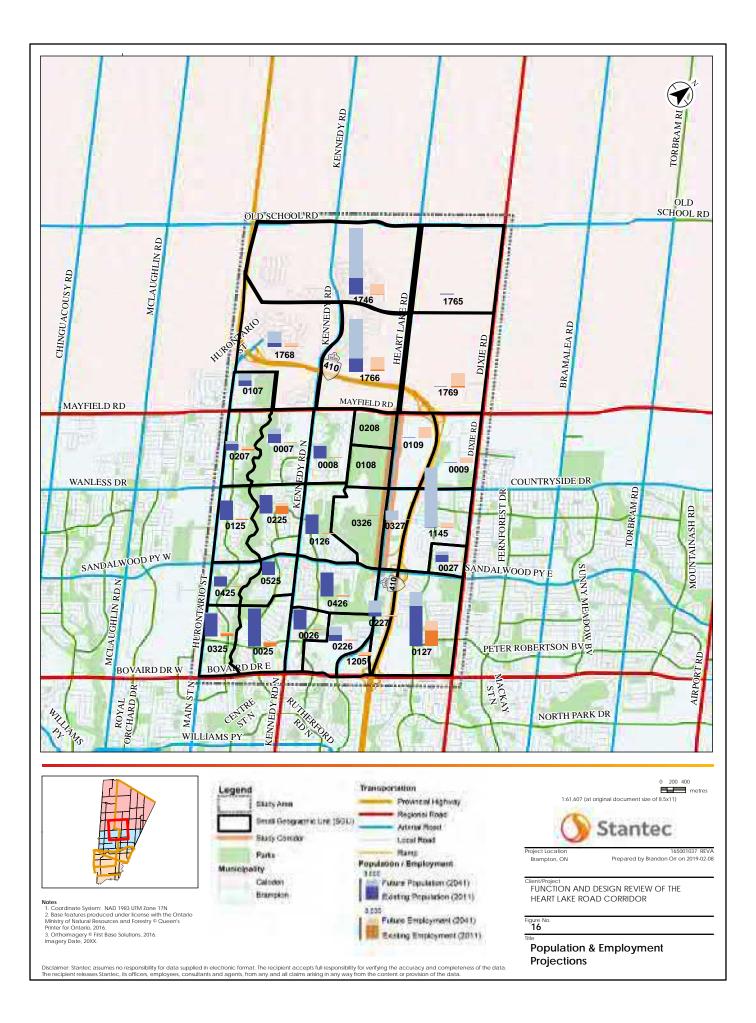
Population and employment are expected to increase in the future, particularly in areas adjacent to Highway 410 and Heart Lake Road. The projected population and employment figures are summarized in **Table 5**.

SGU	Population (2011-2041)	Employment (2011-2041)
0327	1,342	175
0109	21	1,602
0326	0	46
0108	0	0
0208	5	0
1766	7,182	1,894
1769	106	1,937

Table 5: Growth Areas along the Heart Lake Road Corridor

Source: Hemson Consulting Ltd. 2017 & Brampton Emme Regional Model 2017

Table 6 shows traffic volumes forecasted by the City of Brampton's Regional Model for future horizon years on Heart Lake Road between Countryside Drive and Sandalwood Parkway. The focus is on the morning peak period as it is the period when we find mostly recurrent trips (work or study). This takes into consideration the population and employment growths shown previously.


Table 6: Brampton Regional Model - Travel Demand Forecast at Future Horizons on Heart Lake Road – AM Peak

Link / AM Peak Hour Volumes		Horizon		
	2016	2031	2041	
Heart Lake Rd, between Countryside Dr. and Sandalwood Pwy Southbound	401	415	430	
Heart Lake Rd, between Sandalwood Pwy and Countryside Dr Northbound		429	472	

Source: Brampton Emme Regional Model 2017

What emerges from **Table 6** is that the anticipated growth between 2016 and 2041 is not significant for trips travelling southbound, which is the direction of the peak in the morning. The growth is mostly in the opposite direction of the peak (northbound), where it grows more significantly. Since the anticipated growth is not significant for a road with an already relatively low traffic flow, it is assumed that traffic conditions will remain similar to the existing conditions in the future.

Transportation November 2019

Figure 17 and Figure 18 show the path of drivers who pass by Heart Lake Road just south of Countryside Drive during the morning and afternoon weekday peak periods according to the City of Brampton's Regional Model. It clearly shows that the travel demand on Heart Lake Road is in relation to trips from/to Countryside Drive. It also shows that people driving along Heart Lake Road travel up to King Street to the north (in Caledon) and beyond Highway 401 to the south.

3.1.2.2 Planned Improvements

Based on the traffic demand forecast prepared for the 2015 Brampton Transportation Master Plan, several transportation improvements were identified for the area. These include a mixture of road widening, transit upgrades and active transportation routes. The list of improvements can be seen below in **Table 7**.

Туре	Corridor	Description	Timeframe
Road	Dixie Rd.	Widening to 6-lanesMayfield Rd. to Countryside Dr.	As development warrants by 2041
Road	Sandalwood Pkwy	 Widening to 6-lanes between Hurontario and Heart Lake Road Widening to 6-lanes between McLaughlin Rd and Hurontario 	2024 2026
Road	Kennedy Rd.	Widening to 6-lanesBovaird Dr. to Williams Pkwy	As development warrants by 2041
Transit	Zum – Bramalea Rd.	BRT route along Bramalea Rd. between Bramalea GO station and Sandalwood Pkwy	2031
Transit	Higher Order Transit - Hurontario Street/Main Street	 Higher-Order transit to be determined along Hurontario St. between Mayfield Rd. and Brampton GO station 	2031
Transit	Zum – Sandalwood Pkwy	 BRT route along Sandalwood Pkwy with terminals at Bovaird/Airport Rd., and Bovaird/Chingacousy Rd. 	2031-2041
Transit	Zum – Kennedy Rd.	BRT route along Kennedy Rd. between Steeles Ave. and Sandalwood Pkwy	2031-2041
Active Transportation	Various Trails	 Various off-road and on-road cycling facilities connecting to the existing network of trails and boulevard paths 	Phasing to be determined until 2041

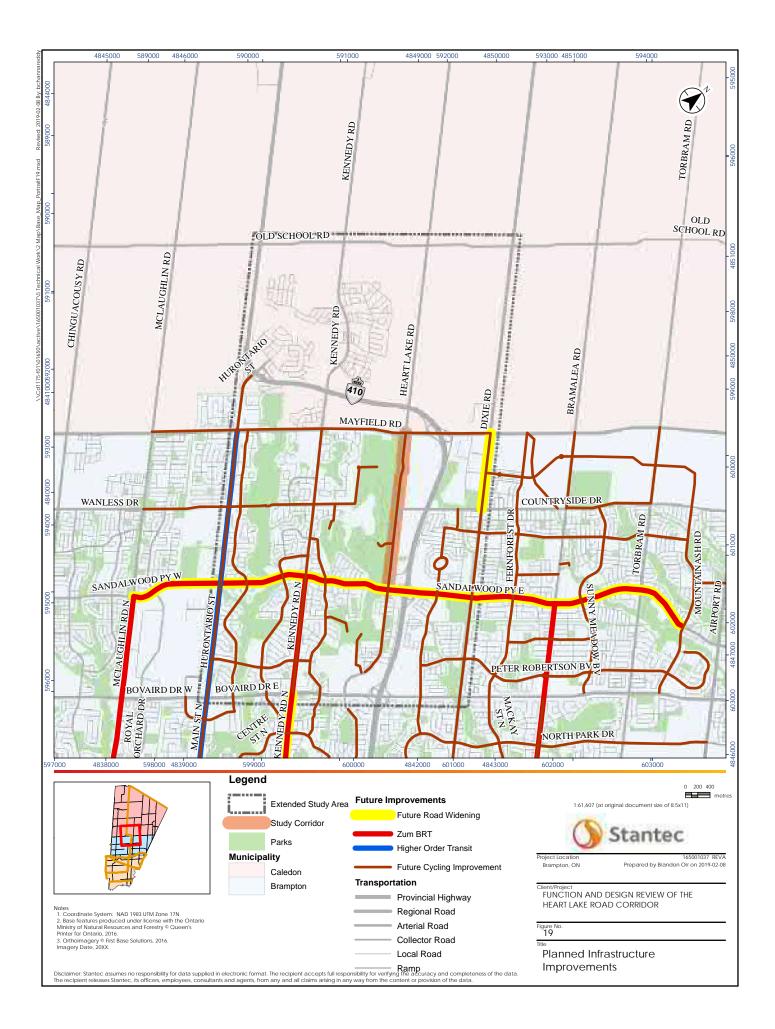
 Table 7:
 Planned Infrastructure Improvements

The expansion of Sandalwood Parkway and the addition of Zum will increase the capacity of the surrounding road network while simultaneously bringing high-quality transit to the footsteps of the study area. There will also be several active transportation connections between these improvements, connecting to the existing active transportation network and providing connections where there currently are missing links. Heart Lake Road is identified as a bicycle facility candidate for bicycle lane in the City of Brampton Transportation Master Plan.

Figure 19 shows of a map of the improvements listed above.

Transportation November 2019

Source: Brampton Emme Regional Model 2017


Transportation November 2019

Source: Brampton Emme Regional Model 2017

Figure 18: Future Situation – Select Link Analysis @ Heart Lake Rd south of Countryside Dr | 2041 PM Peak

Transportation November 2019

3.2 SAFETY

This section presents the road safety assessment along the Heart Lake Road corridor, between Mayfield Road and Sandalwood Parkway, consisting of a collision analysis along the corridor and at several midblock locations.

The City of Brampton adopted a Vision Zero Road Safety Strategic Plan in 2018. In a Vision Zero jurisdiction, safety is prioritized over factors that traditionally influence transportation decision making, such as cost, vehicle speed, delay to vehicular traffic, and vehicular level of service. The framework of Vision Zero is that no loss of life or injury from a collision is considered acceptable plays into how to make Heart Lake Road safer for all roadway users; motorists and cyclists.

Collision data from 2011 to 2016 was provided by the City of Brampton. The data presents all reported collisions involving motorized vehicles, pedestrians and small vehicles like bicycles, in terms of collision type, severity and environmental state. The locations and total collision occurrences are illustrated in **Figure 20**.

Figure 20: Total Number of Collisions by Location

Transportation November 2019

3.2.1 Collision Frequency

Historical collision data for the study area, collected between 2012 and 2017, identified a total of 185 collisions over the six years, with an average 30 collisions per year (see **Table 8**).

As expected, the overwhelming majority of collisions occurred on the Heart Lake Road and Sandalwood Parkway intersection (157). A few collisions occurred at the Countryside Road intersection (20).

The breakdown of collision by year reveals generally consistent patterns, with 2013 representing the peak year with a total of 35 collisions. A very slight downward trend has been observed since.

Intersection	2012	2013	2014	2015	2016	2017	Total
Heart Lake Rd. – Countryside Dr.	4			2	6	8	20
Heart Lake Rd Hwy 410 off-ramp			1				1
Heart Lake Rd. – Sandalwood Pkwy	22	34	29	28	20	24	157
Heart Lake Rd. between Hwy 410 off-ramp and private access			1		1		2
Heart Lake Rd. between Hwy 410 off-ramp and Sandalwood Pkwy	1	1					2
Heart Lake Rd. between Countryside Dr. and Mayfield Rd.				1		1	2
Heart Lake Rd. between Countryside Dr. and private access			1				1
Total	27	35	32	31	27	33	185

 Table 8:
 Total Yearly Collisions by Location

Since these intersections experience traffic demand at different scales, the collision reports must be compared on a common Collision Rate (CR). The most often metric for CRs is the number of collisions per million vehicles entered (MVE), which is defined as:

$$CR = \frac{C_{AV}}{\left(\frac{365*Vmax^{*10}}{1,000,000}\right)}$$
 Where, C_{AV} = Average yearly collisions, and V_{max} = Peak hourly volume

A CR less than or equal to 1.0 is generally considered to reflect a normal propensity to collisions and represents an intersection with no significant issues aside from basic human error.

MVE analysis of Heart Lake Road (see **Table 9**) suggests that the intersection of Heart Lake Road and Sandalwood Parkway experienced over the last 6 years an unusually high number of collisions on average.

Transportation November 2019

Intersection	Total Collisions	Average Yearly Collisions	Peak Hour Volume	Collision Rate (C / MVE)
Heart Lake Rd. – Countryside Dr.	20	2.4	716	0.92
Heart Lake Rd Hwy 410 off-ramp	1	0.2	835	0.07
Heart Lake Rd. – Sandalwood Pkwy	157	26.6	3,969	1.84
Heart Lake Rd. between Hwy 410 off-ramp and private access	2	0.4	608	0.18
Heart Lake Rd. between Hwy 410 off-ramp and Sandalwood Pkwy	2	0.4	825	0.13
Heart Lake Rd. between Countryside Dr. and Mayfield Rd.	2	0.2	434	0.13
Heart Lake Rd. between Countryside Dr. and private access	1	0.2	464	0.12

Table 9: Average Collision Rate by Survey Location

3.2.2 Collision Classification

A review of the breakdown of collisions by type of impact observed at the surveyed locations (see **Table 10**) highlights that the majority of collisions were classified as either property damage (74%) or non-reportable (9%) (i.e. a minor collision resulting in damages worth less than \$2,000) while only 16% of collisions resulted in injuries. No fatalities were reported during this period. Considering that only 16% of collisions over the past 5 years resulted in an injury, the area does not appear to present any abnormally high safety concerns. The following analysis nonetheless seeks to clarify the propensity for collisions, as illustrated by report collision types and geometric and environmental factors that might explain them.

Intersection	Non-Fatal Injury	P.D. Only	Non- Reportable	Total
Heart Lake Rd. – Countryside Dr.		12		12
Heart Lake Rd Hwy 410 off-ramp		1		1
Heart Lake Rd Sandalwood Pkwy	25	94	14	133
Heart Lake Rd. between Hwy 410 off-ramp and private access		2		2
Heart Lake Rd. between Hwy 410 off-ramp and Sandalwood Pkwy		2		2
Heart Lake Rd. between Countryside Dr. and Mayfield Rd.		1		2
Heart Lake Rd. between Countryside Dr. and private access		1		1
Total	25	113	14	153
% of Collisions	16%	74%	9%	100%

3.2.2.1 Collision Data Follow-Up

A similar review of collision data by type of impact conducted on data collected during the study period (2017-2018) revealed similar trends. The majority of the collisions were classified as either property damage or non-reportable and the study area does not present abnormally high safety concerns.

Transportation November 2019

Table 11: Collision Data 2017-2018

Intersection	Non-Fatal Injury	P.D. Only	Non- Reportable	Total
Heart Lake Rd. – Countryside Dr.		13		13
Heart Lake Rd Hwy 410 off-ramp		1		1
Heart Lake Rd Sandalwood Pkwy	6	39	1	46
Heart Lake Rd. between Hwy 410 off-ramp and private access		1		1
Heart Lake Rd. between Hwy 410 off-ramp and Sandalwood Pkwy	1	5		6
Total	7	59	1	67
% of Collisions	10%	89%	1%	100%

3.2.3 Collision Type

Analysis of collisions by type and movement suggests that over 75% of collisions were either rear-end, turning, or sideswipe related (see **Table 12**). These impact types are typically less dangerous than Angle or Approaching collisions which are usually accompanied by higher speeds and more direct physical impacts to vehicle occupants.

Intersection	Angle	Approaching	Other	Rear end	Sideswipe	SMV other	Turning movement
Changing lanes			1	1	5	1	3
Going ahead	6	4		20	6	4	
Making "U" turn							1
Other						1	
Overtaking							
Pulling onto shoulder or toward curb			1				
Reversing	1		1				
Slowing or stopping	2			11			
Stopped				5	1		2
Turning left	4			1	2	2	37
Turning right	3			2	1	1	3
Total	16	4	3	40	15	9	46
% of Collisions	12%	3%	2%	30%	11%	7%	35%

Table 12: Collision Type by Manoeuvre Type (Heart Lake Rd / Sandalwood Pkwy) 2012-2

Rear-end collisions mostly occurred when drivers follow too closely and are unable to react to deceleration quickly enough. Left-turn collisions occur into oncoming vehicles, with turning drivers executing improper turns. Typically, rear-end collisions occur when there is more congestion and higher volumes of traffic. This falls in line with our observations at the Heart Lake Road and Sandalwood Parkway intersection, where some of the southbound movements are approaching capacity.

Transportation November 2019

We do note a relatively high occurrence of collisions when turning left. A review of turning collisions by movement reveals a very high proportion of westbound-left turning vehicles colliding with eastbound-through movements (see **Table 13**). All 26 of these collisions occurred at the Heart Lake Road and Sandalwood Parkway intersection.

Movements	EBT	EBU	EBL	NBT	NBR	SBT	SB-STOPPED	SBL	WBT	WBL	WBR
EBT										1	
EBL									1		1
EBR											
NBT					1						
NBU				1							
NBL				1		1					
NBR									1		
SB-OVERTAKING								1			
SB-STOPPED							1				
SBL	6			2							
SBR						1					
WBT		1	1								
WBU	1										
WB-STOPPED										1	
WBL	26							1			

 Table 13:
 Total Collisions by Movements

Left turns generally occur in conflict with oncoming through movement in permissive traffic signal operations. The number of such collisions itself at this intersection is relatively small when compared to the high volume of vehicles (close to 1,766 during the AM peak hour) executing the two movements involved. As noted subsequently, a report was prepared for recommending improvements to increase safety at the intersection of Heart Lake Road and Sandalwood Parkway.

3.2.4 Heart Lake Road and Sandalwood Parkway Intersection

The City of Brampton through their network screening process has identified sites within their road network exhibiting higher than expected collision risk. One such intersection is Heart Lake Road and Sandalwood Parkway.

Appendix E presents the safety review prepared in 2014 at the intersection of Heart Lake Road and Sandalwood Parkway. From the safety review of Heart Lake Road/Sandalwood Parkway, a number of countermeasures and remedial treatments have been identified to specifically address one or more dominant collision types, or to rectify a potential hazard. A potential hazard is identified as a deficiency in safety, operations, and/or positive guidance at a location that may or may not be contributing to a specific collision concern.

The safety review that was conducted recommended both short-term and long-term improvements, as well as the rationale for their implementation.

Table 14 shows the recommended improvements at this intersection.

Transportation November 2019

Intersection	Recommended Improvement	Rationale	Time Frame
Heart Lake Road / Sandalwood Parkway	Revised pedestrian curb ramp and orientation channels on the southeast corner to direct pedestrians to available east-west crosswalk	Improve guidance for visually impaired users	Short Term
	Provide tooled orientation channels on the northwest corner for north-south crossing	Improved guidance for visually impaired users	Long Term
	Review single point ramp on the northeast corner of the intersection to incorporate tooled orientation channels for east-west crossing	Improved guidance for visually impaired users	Long Term
	Replace CHEVRON ALIGNMENT (Wa- 9) signs with white post mounted delineators as described in Section 4.3 OTM Book 11	Improved motorist comprehension of the road alignment (shift). Ensure compliance with the Ontario Traffic Manual	Short Term
	Implementation of stop bar detection for westbound left turn movements	Reduce collision potential between westbound left and eastbound through vehicles	Medium Term
	Request enforcement of eastbound operating speeds approaching the intersection	Reduce potential for eastbound rear end collision potential	Short Term

Table 14: Recommended Improvements at the Heart Lake Rd and Sandalwood Parkway Intersection

Source: Giffin Koerth, 2014

*The stop bar detection was proposed to address the conflict between for westbound left turn movements and eastbound through traffic during permissive signal phase.

3.3 SIGHT LINES

A sight distance evaluation was undertaken along the Heart Lake Road corridor from Mayfield Road to Sandalwood Parkway. The evaluation of available and required sight distance is in conformance with the *Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDG)*, September 1999. To assure that adequate sight distances are available to drivers approaching potential conflict locations along the Heart Lake Road corridor, and to drivers departing from the stopped position turning on to the corridor, both stopping sight distances and turning sight distances must be assessed. A design speed of 80 km/h, 20 km/h above the posted speed limit along Heart Lake Road was used.

3.3.1 Stopping Sight Distance

Apart from the intersections with Mayfield Road and Sandalwood Parkway, no traffic control or yield exists along the north-south directions of Heart Lake Road, therefore, the required approaching sight distance along this section is evaluated using stopping sight distance. Stopping sight distance is the sum of the distance travelled during the perception and reaction time and the braking distance. To determine the minimum stopping sight distance relative to the design speed, *TAC Table 1.2.5.3 – Stopping Sight Distance for Automobiles and Trucks with Antilock Braking Systems* is used. With a design speed of 80 km/h, it is found that the minimum stopping sight distance is 115 m to 140 m.

The majority of the Heart Lake Road corridor horizontal alignment is very straight and provides excellent sight distances. Minimum stopping sight distances are met for most approaches to intersecting roads and driveways. An

Transportation November 2019

exception is noted at the northbound approach to the south Lakeside Garden Gallery access which has thick vegetation adjacent to it.

In both directions prior to the horizontal curve between Countryside Drive and Mayfield Road, signage is posted which warns drivers that the road curves ahead and that drivers should navigate the curve at a maximum of 60 km/h. The minimum stopping sight distance of 115 m would not be met around the curve due to the vegetation and road curvature which may result in hazardous conditions where drivers would not be given sufficient time to brake were an animal or object to be located along the curve. In addition, the recommended maximum speed of 60 km/h does not vary from the regular posted speed limit along Heart Lake Road and may not motivate drivers to reduce their speed while navigating around the curve.

The required stopping sight distance with a design speed of 70 km/h is 95 to 110 m. It is recommended to manage the vegetation along the west side of Heart Lake Road around the curve such that sufficient stopping sight distance can be provided.

3.3.2 Departure Sight Distance Triangles

In this section, sight distance triangles are evaluated for crossing, left-turning, and right-turning movements at the intersections within the Study area to assure that they meet the minimum requirements as outlined in *TAC Figure* 2.3.3.2 – *Departure Sight Triangles*. Evaluation of required sight triangles at stop-controlled and signalized intersections is conducted in the same manner. Departure sight distance requirements are not as stringent for signalized intersections because the movements are being controlled with traffic signals. The minimum sight distance required for stop-control intersections is recommended to be provided for signalized intersections in the event of a signal malfunction or if a driver on an opposing approach runs through a red light.

The intersections of Heart Lake Road with Mayfield Road and Sandalwood Parkway exceed two-lane cross sections, therefore, the departure sight triangles for these intersections are determined using *TAC Equation 2.3.1* which incorporates design speed, perception reaction time, and time to traverse the intersection. Left-turning and right-turning departure sight triangles are determined using *TAC Figure 2.3.3.4a* and *TAC Figure 2.3.3.4b*.

Equation 2.3.1
$$D_1, D_2 = \frac{V(J+t)}{3.6}$$

A design speed (V) of 80 km/h is used in *TAC Equation 2.3.1*, with a perception reaction time (J) of 2 seconds. Variable t is the time in seconds to cross the intersecting roadway and is determined from *TAC Figure 2.3.3.3* – *Assumed Acceleration Curves (Acceleration from Stop Control on Minor Road)*. The crossing distance includes the distance from the stop bar to the edge of the intersecting roadway, the width of the intersecting roadway, and the length of the crossing vehicle. A passenger car vehicle with a length of 5.6 m as shown in *TAC Table 1.2.4.1* – *Design Dimensions for Passenger Cars* is used in the estimation of crossing distance.

Location on Heart Lake Road	Approach	Crossing Distance	Time (t)	Required Sight Distance	Requirement Met
Mayfield Rd.	North	48 m	8.25 s	228 m	Yes
	South	48 m	8.25 s	228 m	Yes
	East	43 m	7.5 s	211 m	No
	West	43 m	7.5 s	211 m	Yes
Sandalwood Pkwy	North	43 m	7.5 s	211 m	Yes
	South	46 m	8 s	222 m	Yes

Table 15: Crossing Sight Distance

Transportation November 2019

Location on Heart Lake Road	Approach	Crossing Distance	Time (t)	Required Sight Distance	Requirement Met
	East	37 m	7.25 s	206 m	No
	West	37 m	7.25 s	206 m	Yes

Table 15: Crossing Sight Distance

Due to the embankments along Heart Lake Road north of Mayfield Road, sight distance for the east approach is not fully provided. It is noted, however, that departure sight distance requirements at signalized intersections are not as stringent as stop-control intersections and that drivers on the east approach would be able to slowly move forward to have a better sightline. Trees and other vegetation along Heart Lake Road north and south of Sandalwood Parkway obstruct sightlines from the stop bar of the east approach to Sandalwood Parkway/Heart Lake Road.

Sight distance at signalized intersections is assessed only for vehicles turning right on red phases and looking to the left for opposing vehicles. This is done because vehicles turning left and right at signalized intersections on protected phases can move freely and do not require gaps to accommodate acceleration time. The signalized intersections of Heart Lake Road with Mayfield Road and Sandalwood Parkway are not two-lane roadways, therefore, *TAC Table 2.3.3.4a* and *2.3.3.4b* are not applicable and *TAC Equation 2.3.3* is used to determine the required intersection sight distance (ISD).

Equation 2.3.3
$$ISD = \frac{V_{major} \ x \ t_g}{3.6}$$

The time gap (t_g) is found from *TAC Table 2.3.3.2a* to be 6.5 seconds for a passenger car turning right. Adjustments are not required for the right turn on red movements since the additional width of the roadway does not affect the travelled distance to complete the right turn movement. Using a design speed (V_{major}) of 80 km/h, the required sight distance looking left for all right-turning movements is 144 m.

The required intersection sight distance for right-turning movements is provided at all road except for the east approach to Heart Lake Road/Highway 410 southbound off-ramp. Due to the alignment of the Heart Lake Road approach to the intersection at Sandalwood Parkway, sightlines looking left from the Highway 410 southbound off-ramp may be obstructed by vegetation requiring drivers to advance closer to Heart Lake Road for better sightlines. It is recommended to manage the vegetation along the south-east section of Heart Lake Road/Highway 410 southbound off-ramp such that the minimum 144 m sight distance can be provided.

Location on Heart Lake Road	Approach	Looking Towards	Required Distance	Meets Requirement
Countryside Dr.	East	Left	155 m	Yes
		Right	170 m – 250 m	Yes
HLCA Access	West	Left	155 m	Yes
		Right	170 m – 250 m	Yes
Highway 410 Southbound Off-	East	Left	155 m	No
Ramp		Right	170 m – 250 m	Yes

Table 16: Left-Turning Departure Sight Triangles

Left-turning departure sight triangles are provided along all approaches with the exception of the previously identified deficient sightline to the left of the east approach of Heart Lake Road/Highway 410 southbound Off-Ramp.

Transportation November 2019

3.3.3 Recommendations to improve Sightlines

There are several opportunities to improve sightlines along the Heart Lake Road corridor from Mayfield Road to Sandalwood Parkway. These opportunities include:

- 1. Manage vegetation along the south of the south access to Lakeside Garden Gallery to provide adequate approaching and departing sight distance of 155 m;
- 2. Trim vegetation and reduce the posted speed limit to 50 km/h along the curve of Heart Lake Road between Mayfield Road and Countryside Drive to provide adequate stopping sight distance of 95 m; coupled with lane width reductions, speed cushions, will help to improve sightlines; and
- 3. Trim vegetation along the south-east section of Heart Lake Road/Highway 410 SB Off-Ramp to provide adequate turning sight distance of 155 m for vehicles departing from the stopped position from the Highway 410 southbound off-ramp.

Transportation November 2019

3.4 GEOMETRY

Figure 21 shows a typical cross-section on Heart Lake Road just south of Countryside Drive where the existing ecopassage is located. This figure shows that currently traffic lanes have a width of 3.7 m, with very large shoulders, which is comparable to what is observed on highways. This geometry would explain why many vehicles travel at speeds higher than posted (60 km/hr) since wide traffic lanes encourage high speeds.

Figure 21: Existing Conditions | Typical Cross-Section

3.5 INFRASTRUCTURE CONDITIONS

Previous geotechnical investigations were completed in the area Engtec Consulting Inc. (Engtec) in August and November 2015. In addition, Stantec completed a geotechnical investigation in 2017 as part of this study, including the completion of six boreholes at various locations along Heart Lake Road within the study area (please refer to **Appendix F**). These reports take into consideration the possible addition of bicycle lanes on both sides of Heart Lake Road, potential intersection improvements and the addition of wildlife crossings.

Regarding the soils under the proposed crossing at station 0+800 (just north of the access to the HLCA), two boreholes were completed at this location as part of the 2017 investigation. These boreholes were advanced through the existing pavement structure to obtain the information on the thickness of the pavement structure of the existing road (240 mm and 245 mm), the thickness of the granular base/subbase (500 mm), and through the shoulders of the existing road. Subsurface conditions encountered below the granular base/subbase during drilling consisted of sandy silt to silty sand fill, extended to depths ranging from about 1.1 m to 4.7 m below the existing ground surface. Below the fill materials, peat deposits were encountered, and extended to depths ranging from about 1.9 m to 5.6 m below the existing ground surface. According to boreholes logs, the peat layer, which thickness varies from 1.1 m to 0.4 m, is at a depth of 3.3 m on the south side of Heart Lake Road, and at 2.6 m on the north side. The peat layer is generally highly compressible and will be subject to long term settlement and potentially to differential settlement, should additional loading be applied. Below the peat, silty sand deposits were encountered, and was noted to extend to the termination depths of the boreholes.

Transportation November 2019

A borehole advanced at Station 0+300 (closer to Sandalwood Parkway) encountered a shallow peat layer (less than 1 m thickness) below the embankment fill and 1.3 m under the ground level. Consolidation settlement of the peat should be expected because of the road widened to accommodate the new bike lanes. The amount of consolidation settlement will be dependent on the load produced by the new road embankment fill and the thickness of the compressible deposits. The anticipated road embankment will range in height from 1 m to 4 m.

The installation of concrete box culverts would increase the existing load of the road on the underlying soils below. As such, the peat layers would have to be removed on both locations and replace with class B controlled backfill. This would require an excavation starting from a depth of 4.4 m for the south side and going up to a depth of 3 m for the north side. It is considered that the excavation required for the removal of the peat layers, especially the shallow one, would not be difficult to perform.

Regarding the StormTech chambers, the removal of the peat layers is not required, because they will substantially decrease the existing load of the road on the underlying soils below. However, as mentioned above, as the removal of the peat layers doesn't appear to be complicated, we recommend the peat layer removal in order to eliminate any consolidation settlement later if road widening is required for the new bicycle lanes.

3.6 SUMMARY

The followings summarize the transportation issues and challenges noted on the Heart Lake Road corridor:

- Daily traffic on Heart Lake Road, between Countryside Drive and the Highway 410 off-ramp, is currently around 7,000 vehicles per day, 4,000 southbound and 3,000 northbound;
- The existing and forecasted traffic volumes do not justify widening of Heart Lake Road (additional traffic lanes), given that the theoretical capacity per lane for a typical two-lane rural roadway is 800 veh/h;
- The LOS for the intersections of Heart Lake Road and Mayfield Road, Countryside Drive and Sandalwood Parkway is generally A, B and C, with the exception of the left turn lane at Heart Lake Road and Sandalwood Parkway which is LOS F;
- Vehicles travelling on Heart Lake Road currently exceed the speed limit, which reduces safety on the corridor, given that higher speeds increase the probability and severity of collisions;
- Heart Lake Road is identified as a candidate for cycling infrastructure in the City's Transportation Master Plan, based on the guidance from the Ontario Traffic Manual Book 18: Cycling Facilities and specifically the Facility Selection Tool (described below) the appropriate bike facility for Heart Lake Road would include a designated cycling operating space (exclusive bike lane) or separated facility (buffered paved shoulder);
- Improvements are required at the intersection with Sandalwood Parkway to improve safety conditions (see Table 14);
- There is a need for active transportation facilities in the study area to support the City's Transportation Master Plan and reduce car mode share in the area;
- Heavy trucks are observed on Heart Lake Road despite being prohibited; and
- Road infrastructure conditions constrain the type of measures that can be put in place along the corridor.

Based on the Ontario Traffic Manual (OTM) Book 18, there is a three-step process to determining the type of bicycle facility to include within the existing roadway profile. Step One allows practitioners to pre-select the bicycle facility type based on the motor vehicle operating speed and the average daily traffic volume. This step is accomplished through the use of the "Desirable Bicycle Facility Pre-Selection Nomograph" as shown in **Figure 22**.

Step Two guides practitioners to make a more detailed look at site specific characteristics in order to determine the appropriateness of the pre-selected facility type. Practitioners use this step to critically evaluate the situation in order

Transportation November 2019

to select the most appropriate facility type. Step Three guides practitioners in documenting their rationale for their final decision.

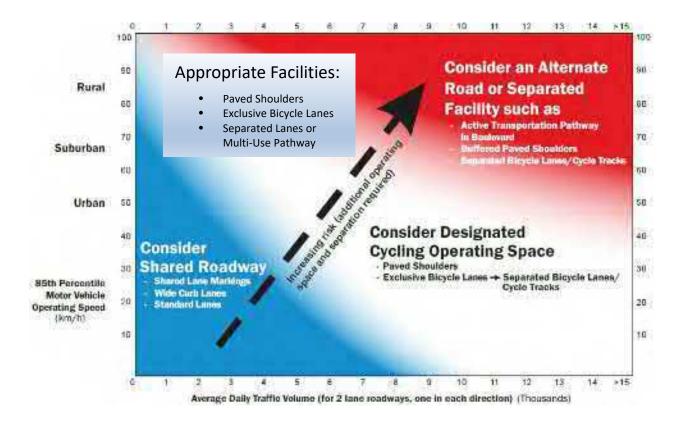


Figure 22: Desirable Bicycle Facility Pre-Selection Nomograph

Ecology and Environment November 2019

4.0 ECOLOGY AND ENVIRONMENT

4.1 BACKGROUND REVIEW

Stantec completed a cursory review of the following information sources to gather a preliminary understanding of existing environmental conditions within the study area.

- 2015 Heart Lake Road Ecology Report;
- 2016 (Draft) Post Eco-Passage Installation Road Ecology Monitoring Report;
- Natural Heritage Information Centre (NHIC) database (retrieved March 16, 2017);
- Species at Risk in Ontario (SARO) List (updated October 1, 2015);
- Ministry of Natural Resources and Forestry (MNRF) Land Information Ontario (LIO) digital mapping of natural heritage features;
- Various wildlife atlases;
- TRCA flora and fauna data for Heart Lake Road Conservation Area;
- Ecological Land Classification data from TRCA;
- Ecological Land Classification data from TRCA;
- Heart Lake Volunteer Road Ecology Monitoring Project, Phase I (2011);
- Heart Lake Road Volunteer Road Ecology Monitoring Project Phase II (2013);
- Heart Lake Road Volunteer Road Ecology Monitoring Project (August 2014);
- Brampton Grow Green Environmental Master Plan (2014);
- Staff Report Supplementary Report: Heart Lake Mitigation Strategy, Brampton City Council April 22, 2015 (includes Appendix Recommendation Report: Heart Lake Mitigation Strategy P&IS April 13, 2015);
- 2015 Road Ecology and Turtle Population Study;
- Best Management Practices for Mitigating the Effects of Roads on Amphibian and Reptile Species at Risk in Ontario (MNRF 2016); and
- HLCA Master Plan (HLCA Master Plan Advisory Committee, 2006).

A search of the NHIC database revealed two recent records of Species at Risk in the area; Butternut and Eastern Meadowlark. **Table 17** shows a list of species of conservation concern that may also be present in the study area based on the information reviewed as part of this study:

Ecology and Environment November 2019

Species Common Name	Species Scientific Name	Provincial Rank	Federal Rank	
Snapping Turtle	Chelydra serpentina	Chelydra serpentina Special Concern		
Eastern Milk Snake	Lampropeltis triangulum	None	Special Concern	
Common Nighthawk	Chordeiles minor	Special Concern	Threatened	
Chimney Swift	Chaetura pelagica	Threatened	Threatened	
Eastern Wood-Pewee	Contopus virens	Special Concern	No status, COSEWIC THR	
Olive-sided Flycatcher	Contopus cooperi	Special Concern	Threatened	
Barn Swallow	Hirundo rustica	Threatened	Threatened	
Wood Thrush	Hylocichla mustelina	Special Concern	No Status, COSEWIC THR	
Bobolink	Dolichonyx oryzivorus	Threatened	No Status, Threatened	
Eastern Meadowlark	Sturnella magna	Threatened	No Status, Threatened	
Little Brown Myotis	Myotis lucifugus	Endangered Endangered		
Northern Myotis	Myotis septentrionalis	Endangered Endangered		
Butternut	Juglans cinereal	Endangered	Endangered	

Table 17: Species of Conservation Concern that may be Present within the Heart Lake Road Study Area

4.2 NATURAL HERITAGE FEATURES

The study area section of Heart Lake Road is one of the largest and most diverse natural areas within the City of Brampton. HLCA which is owned by TRCA, is located on the west side of the road and comprises a diverse, 169-hectare ecosystem that includes; two kettle lakes, the headwaters for Spring Creek and a wetland complex. HLCA has one of the largest blocks of forest in the Etobicoke Creek watershed, and contains six provincially rare vegetation community types, Provincially Significant Wetlands (PSWs), the remaining portions of Brampton Buried Esker, an Environmentally Significant Woodland area and a bog designated as an Area of Natural and Scientific Interest. Over 40% of the HLCA is covered in forest, which is rare since most forests within Peel Region were cleared for agricultural purposes during the 19the century (City of Brampton 2014:11).

At least seventy-five species of birds nest within the HLCA, including 26 threatened bird species and a regionally significant heronry. There are also many herpetofauna and mammal species and more than 115 plant species, of which more than 50 species are classified as species of regional conservation concern (L1-L3; HLCA Master Plan, u.d).

4.3 WILDLIFE ROAD MORTALITY

4.3.1 Heart Lake Road Ecology Volunteer Monitoring Project

Heart Lake Road, between Sandalwood Parkway and Countryside Drive, is known as a "hotspot" for wildlife mortality. To address the issue of wildlife mortality on Heart Lake Road, TRCA collaborated with Ontario Road Ecology Group and the City of Brampton to create the Heart Lake Road Ecology Volunteer Monitoring Project (HLREMP) in 2011. In the first year of the project, volunteers monitored over a 25-week period from May to October with the goal of determining the species that were being impacted, and to record the number of wildlife-vehicle interactions (HLREMP 2011). In 2011, 1,239 wildlife road fatalities were documented, confirming that this stretch of road is experiencing high levels of wildlife mortality.

The HLREMP continued to conduct intensive surveys along Heart Lake Road in 2013 (HLREMP 2013), 2015 (HLREMP 2015) and 2016 (HLREMP 2016) and made modifications to the study design and objectives as their knowledge of the road ecology in the area increased. Supplemental research projects were also conducted, including

Ecology and Environment November 2019

a mock culvert and wildlife directional fencing study in 2013 (HLREMP 2013), and a turtle population study in 2014 (HLREMP 2014) and 2015 (HLREMP 2015).

Results from these studies have documented thousands of wildlife-vehicle collisions each year. More than 80% of the wildlife/vehicle collisions consisted of frogs/toads, and turtles comprised 5-8% of the mortality. Frogs and toads typically have limited movements; most remain within 1 km of their respective habitat. In early spring, Wood Frogs and Spring Peepers emerge and move from upland overwintering areas to breeding wetlands. Similar movements occur in late summer when young of the year move from wetlands to uplands areas. When a road bisects their seasonal habitat, high levels of road mortality can result, as is occurring along Heart Lake Road.

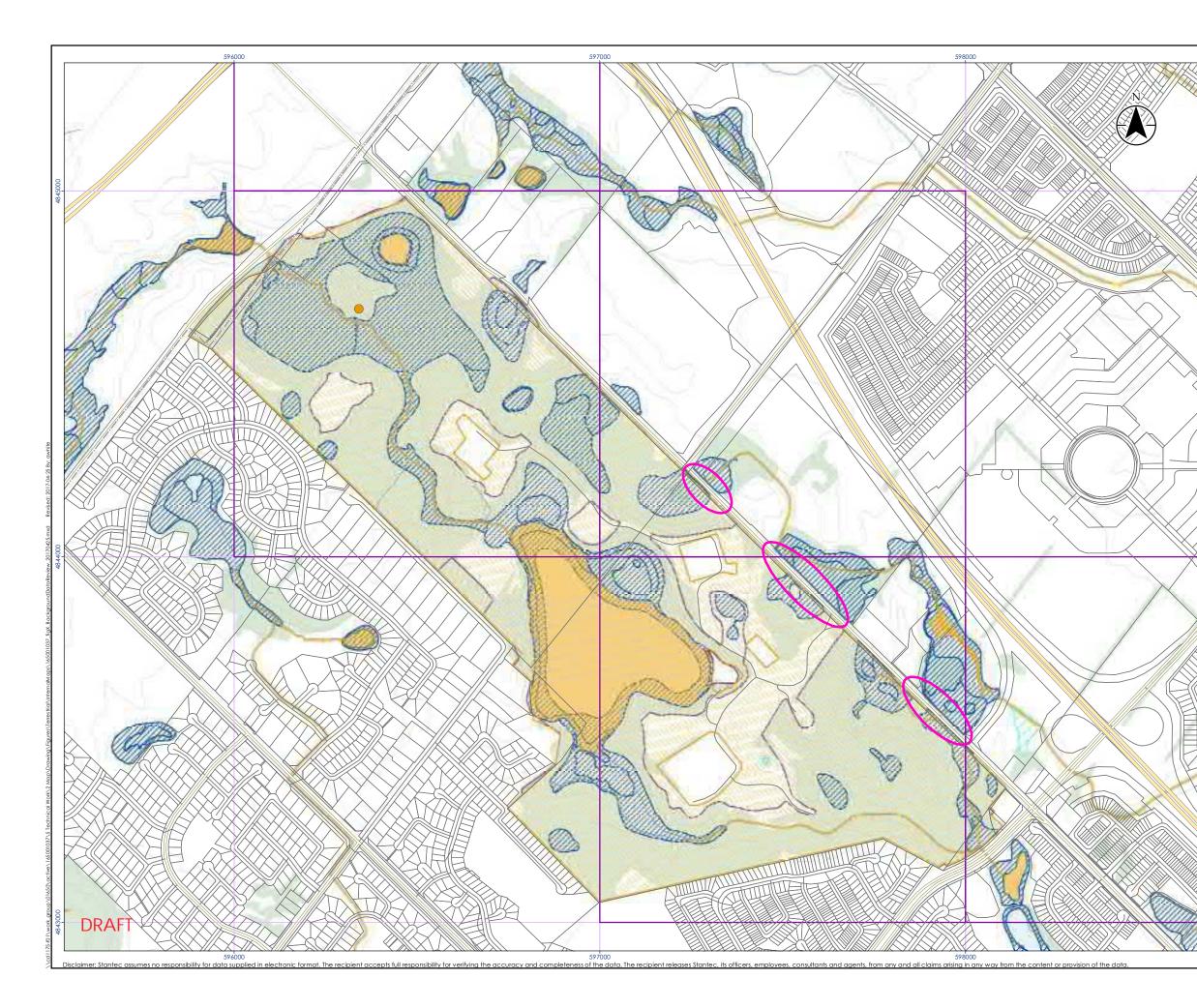
As noted in the 2013 HLREMP, wildlife fatalities reported on Heart Lake Road included 77 mammals, 60 birds, and 37 snake species, two of which were Eastern Milk Snake (a Species at Risk). In addition, more than 100 turtle fatalities were reported in 2013, including Snapping Turtle, which is a species of Special Concern both federally and provincially. Snapping Turtles are a long-lived species with delayed sexual maturity. The loss of even a few individuals can have population-level impacts. Vehicle collisions with turtles are a well-documented threat to turtle populations in Ontario (Ashley and Robinson 1996, Gibbs and Shriver 2002, COSEWIC 2008). Gibbs and Shriver (2002) recommend that roads with more than 100 to 200 vehicles/land/day can have substantial limitations on land turtles such as the Snapping Turtle.

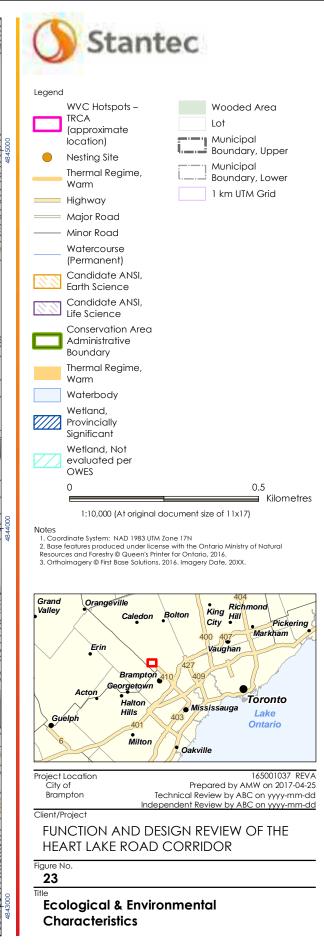
The frog and turtle populations within the study area are of regional significance because they represent the most southerly location for several species in the Etobicoke Creek watershed including Wood Frog, Spring Peeper, Leopard Frog and Midland Painted Turtle. Furthermore, Snapping Turtle is only found at one other more southerly location within the watershed.

4.3.2 Road Mortality Hotspots

Identifying spatial hotspots of wildlife-vehicle collisions (WVC) and understanding the factors that influence the occurrence of hotspots are essential for designing appropriate road mitigation (Gunson and Teixeira 2015). In 2013, the HLREMP focused on mapping the locations of wildlife fatalities to identify 'hotspots' or sections of the road where the largest number of fatalities were occurring (HLREMP 2013). When a WVC was noted in the field, it was mapped to the nearest fixed location (which were flagged along the road at approximately 25 m increments). A figure was then created, which showed locations of all fatalities along the road and the frequency of occurrence. Each fixed location was placed into one of the following categories, representing the number of fatalities associated with the point:

- Category 1: 1 WVC
- Category 2: 2-42 WVC
- Category 3: 43-54 WVC
- Category 4: 55-71 WVC
- Category 5: 72-114 WVC




Ecology and Environment November 2019

Sections of road where the highest number of mortalities were recorded (i.e. areas with clustering if category 4 and 5 points) are identified visually and grouped into three sections ("hotspots"), as shown on **Figure 23**. The identification of these sections of road will assist with the design and implementation of mitigation, noting that an eco-passage is already installed at the "hotspot" just south of Countryside Drive.

The reports related to Phases 1 and 2 of the HLREMP are provided in Appendix G of this report.

Ecology and Environment November 2019

4.4 MITIGATION MEASURES

There are many different mitigation measures to reduce the occurrence of WVCs and associated fatalities, which vary in cost, permanence, and effectiveness (Gunson and Schueler 2012). These include structures such as underpasses and fencing, wildlife crossing signs, and measures to reduce traffic volume and speed. Using the data that have been collected since 2011, many mitigation measures have been recommended by the HLREMP and the TRCA to reduce the incidence of wildlife road mortality. The City of Brampton has also developed a Heart Lake Road Mitigation Strategy in 2015.

4.4.1 Traffic Calming Measures

One of the mitigation measures suggested by the HLREMP to reduce road mortality was to install a three-way stop at the intersection of Countryside Drive and Heart Lake Road. In response to this suggestion, the City of Brampton assessed vehicle volume and speed data and determined that this intersection and the Heart Lake Road/southbound Highway 410 off ramp intersection did not warrant a three-way stop.

Seasonal road closures were also recommended to allow safe passage of wildlife during seasonal dispersal periods. This strategy has been used effectively by the City of Burlington to accommodate the dispersal of Jefferson Salamander. A road closure was a recommended option in the Heart Lake Road Mitigation Strategy. The strategy recommended a three-week closure in both spring and fall. The stretch of the road north of Sandalwood Parkway would remain open to local traffic, including commercial businesses, whereas a 'hard' closure would be used between the HLCA entrance and Countryside Drive.

The road closures were not implemented because local business owners expressed concern that the road closures would have a detrimental effect on their business revenue. It was also decided that nighttime closures were not a viable option due to enforcement and access for land owners. The installation of 'speed cushions' or other vertical deflections to slow down traffic were only recently endorsed for use in the City of Brampton because of concerns from emergency service providers.

Pavement markings (optical speed bars) and wildlife warning signs were recommended as part of the Heart Lake Road Mitigation Strategy and implemented with the goal of reducing the average speed of vehicles along Heart Lake Road and reducing the occurrence of WVCs.

4.4.2 Wildlife Signage

Wildlife signs are advantageous because they are relatively inexpensive and are easily deployed, however their effectiveness varies, and it is important to consider timing and placement of signs prior to deployment (Gunson and Schuler 2012). Wildlife signage is best used in combination with other mitigation measures such as traffic calming, fencing and crossing structures.

A variety of signs have been installed on Heart Lake Road to notify motorists of the dangers of WVC and to slow down traffic, including, "significant natural areas", as well as wildlife crossing signs and solar operated flashing "seasonal wildlife crossing – reduce speed when flashing" signage. As noted, the efficacy of wildlife crossing signs is unknown, as studies have shown mixed results and most research has focused on deer crossing signs (Premo and Premo 1995, Hedlund et al. 2004, Found and Boyce 2011).

Ecology and Environment November 2019

4.4.3 Wildlife Crossing Structures and Fencing

4.4.3.1 Crossing Structure

The MNRF's "Best Management Practices for Mitigating Effects of Roads on Amphibian and Reptile Species at Risk in Ontario" guidance document was prepared in 2016 and provides recommendations on the use of different type of structures, including design, location, spacing, retrofitting of existing culverts and installation and placement of fencing. According to this guide, the use of crossing structures combined with fencing is currently the most effective mitigation measure to reduce WVC for amphibians and reptiles. Crossing structures enhance connectivity by linking fragmented habitats and reduce mortality by directing wildlife away from the road. In addition, the placement of the structure, the construction material, dimensions, substrate, thermodynamics, and amount of natural light will influence the probability of the target species using the eco-passage.

A concrete box culvert was installed by the City of Brampton in April 2016 within one of the wildlife mortality hotspots, located approximately 100 m south of Countryside Drive, in one of the wildlife mortality hotspots. To encourage use of the culvert by amphibians and turtles, the bottom of the culvert was filled with a 10 cm layer of natural soil (HLREMP 2016 draft).

4.4.3.2 Fencing

Fencing should be used in conjunction with crossing structures to direct animals towards structure entrances and to prevent animals from gaining access to the road. Fencing can also be used as a standalone mitigation measure to prevent road mortality, but only if habitat connectivity is not a concern (i.e., areas where habitat is not bisected by the road) (MNRF 2016). The most important objective of fence design is to minimize the likelihood of animals breaching the fence (HLREMP 2016). Fencing should be designed so that animals cannot get under or over the fence, and regularly monitored and maintained so that there are no holes or access points. Fencing design must also consider the target species. For example, Snapping Turtles are good climbers, so an overhanging lip that extends away from the road is recommended for this species (MNRF 2016).

To support the crossing structure installed on Heart Lake Road, Animex one-way exclusionary fencing was installed on the east and west sides of Heart Lake Road, south of Countryside Drive for approximately 190 m and 140 m, respectively. Animex attaches to 45 cm high galvanized steel farm fencing with round posts. The section facing the wetland has a smooth interior and a 15 cm lip angled back to the wetland to discourage climbing. The opposite side of the fence has a textured grid to facilitate the return of animals to the wetland if they are trapped on the roadway. The ends of the fencing are curled back towards the wetland to re-direct animals that may have missed the ecopassage.

Road mortality monitoring in 2016 continued to record high mortality for amphibians and reptiles, but the mortality was concentrated in areas where mitigation has not been implemented. Preliminary data suggest that the installation of the eco-passage and installation of fencing was successful at reducing mortality in the area where mitigation was applied. Further efforts will be needed to reduce mortality on other sections of the road.

Temporary wildlife fencing was installed in the spring of 2018 and was effective in reducing the amount of wildlife mortality along Heart Lake Road. Areas that were not fenced, or where fencing stopped short, did continue to have turtle mortality. These areas are recommended to have an extension of the wildlife fencing in the future.

Ecology and Environment November 2019

4.4.4 Turtle Nesting Mounds

One of the mechanisms behind turtle mortality is that roads are bisecting the turtles' seasonal habitat. Turtles are crossing the road to gain access to nesting sites and may use gravel shoulders as nesting sites. Creating alternative nesting habitat away from the road can be used as a mitigation tool to reduce mortality of nesting females and hatchlings. This method has been proven to be an effective conservation tool for Midland Painted Turtles and Snapping Turtles (Paterson et al. 2013).

To encourage nesting within the wetlands and discourage turtles from accessing Heart Lake Road, TRCA created artificial turtle nesting mounds in May 2016. Mounds were places on both sides of the mitigated section of road, inside the exclusionary fencing. The nesting mounds were not used in 2016, however, drought conditions experienced in that year may have rendered the wetlands that were adjacent to the mounds to be unsuitable for turtles, causing them to disperse elsewhere. Further monitoring will determine whether the artificial nesting mounds are an effective road mitigation tool.

4.4.5 Effectiveness of Mitigation Measures

Table 18 shows average and 85th percentile speeds observed on Heart Lake Road while the mitigation measures were in place. In general, it can be concluded that the effect is not significant.

	Speed		
Year	Average	85 th Percentile	
2013	64	77	
2015	71	82	
2016	70	80	
2018	67	81	

 Table 18:
 Effectiveness of Mitigation Measures on Speed observed on Heart Lake Road

Source: City of Brampton, 2018

5.0 CULTURAL HERITAGE

The study area is currently not listed on the City of Brampton *Municipal Register of Cultural Heritage Resources* (2016) or designated under the *Ontario Heritage Act* (OHA). However, in 2014, the Brampton Heritage Board received a delegation from the public seeking the possible recognition of Heart Lake Road as a cultural heritage landscape. This recognition was not defined at the time and the City of Brampton is seeking additional clarification regarding what recognition options are available.

5.1 SITE HISTORY

5.1.1 Introduction

The study area is located in the former Township of Chinguacousy, now the City of Brampton, within the Regional Municipality of Peel. Heart Lake Road was originally a 19th century corduroy road and was constructed between the late 1820s to the mid-19th century. The following sections outline the historical development of the study area from the time of Euro-Canadian settlement to the 20th century.

5.1.2 Physiography

Heart Lake Road is located in the Peel Plain physiographic region of southern Ontario (Chapman and Putnam 1984: 113). The region is a level to undulating tract of clay soils, stretching across the Regional Municipalities of York, Peel and Halton. The general elevation of the region is 500 to 750 feet above sea level. The underlying geological material is till containing large amounts of shale and limestone. The water supply in the region has historically been a constraint to settlement, due to the density of the till, and the lack of thick beds of sand to serve as aquifers. This is combined with a high degree evaporated water from the deforested clay surface (Chapman and Putnam 1984: 174-175). The major watercourses that traverses the City, include the Credit River, Humber River, the Etobicoke Creek, Fletchers Creek, and Mimico Creek (City of Brampton 2013: 2.3).

The study area crosses one of the most Provincially and Regionally significant natural areas within the City of Brampton (City of Brampton 2015: 11). The Brampton Esker is a geologic formation and is designated a Regional Earth Science ANSI, that supports provincially significant wetlands and approximately eight lakes, including Heart Lake and Teapot Lake within the HLCA (City of Brampton 2015: 4). The esker extends 8 kilometers in a southeasterly direction from Heart Lake Road south to Bovaird Drive (City of Brampton 2013: 2.3). The sands and gravels of the Brampton Esker hold and purify water as it percolates downward, making the esker an aquifer and a groundwater resource. (Laing et al. 2014: 14). Within the exception of the study area and HLCA, most of the Brampton Esker had disappeared due to aggregate extraction (Laing et al. 2014: 57).

The HLCA, the largest greenspace within the City of Brampton is situated adjacent to the study area, occupies 169 hectares (417 acres) within the Etobicoke Creek watershed. The Etobicoke Creek watershed drains a total area of 211 square kilometers and has three distinct branches, the Main Branch, Little Etobicoke Creek watershed, and surficial geology of glacial till and river deposits. In addition, sections of Heart Lake Provincially Significant Wetland Complex, the Heart Lake Woodlands Environmentally Significant Area, and the Heart Lake Forest and Bog Area of Natural and Scientific Interest are found in the HLCA (HLCA Master Plan Advisory Committee; online). The main hydrological feature in the HLCA is the 16.5 ha kettle lake. It was formed 10,000 years ago when an ice block trapped under a melting glacier left a natural steep-sided depression (Laing et al. 2014: 13).

Cultural Heritage November 2019

5.1.3 Historical Development

5.1.3.1 19th Century

The Township of Chinguacousy was surveyed in 1819 by land surveyor Richard Bristol (Laing et al. 2014: 19). The township was surveyed using the double-front system, with concessions running north-south. The system utilized 200 acre lots that were broken into 100-acre parcels, each fronting a concession road. Between every five lots an allowance was surveyed for a side road. Concessions were numbered east and west of Hurontario Street, which runs through the centre of the township (PAMA, Property Research in Peel; online). Hurontario Street was surveyed in 1818 and received its name from the points located at the ends of the route; Lake Huron and Lake Ontario (Heritage Mississauga, History Bytes; online). The route increased accessibility to the township and provided a connection to Dundas Street to the south.

Heart Lake Road is situated on Lots 14 to 17, in Concession 2 East and 3 East. When Heart Lake Road, originally Concession Road 2 East, was laid out by Bristol in 1819, he noted on the survey swamp areas located along the concession road (Laing et al. 2014: 5). The area surrounding Heart Lake Road, at the time of survey, was composed of swamp land and forested land that included species of cedar, hemlock, black ash, beech, maple, basswood, tamarack, and elm (Laing et al. 2014: 26).

Settlements in the township initially developed along Hurontario Street and waterways that provided the water power for mills. The study area, located with the Etobicoke Creek watershed, was the location of a few mills, but given the lack of reliable stream flow, as well as periodic flooding, mills did not thrive on the creek. This was particularly notable when compared to the rivers in the township (TRCA 1998: 21). As a result, the closest settlements near the study area, developed at road intersections, including Edmonton, Mayfield, and Brampton.

Business in the township was initially conveyed at the settlement of Salisbury in the inn operated by Martin Salisbury (Loverseed 1987: 39). The settlement of Brampton developed two kilometers from Salisbury southwest of the study area. In 1834, William Buffy built the first tavern, followed by Judge Scott who built the first store, as well as a pot ashery, distillery, and mill. In 1834, John Elliott laid out the settlement into village lots with the name of Brampton (Pope 1877: 87). The population of Brampton in 1837 was 18 (Loverseed 1987: 40).

The township grew steadily as settlers were attracted to farmland close to the growing markets of the Town of York (now the City of Toronto). In 1841, the population of the Township of Chinguacousy reached 3,721 (Pope 1877: 84). By 1846, the township included 74,977 acres of land, with 26,266 under cultivation. The township is noted in Smith's Canadian Gazetteer, as being one of the best settled townships in the Home District by 1846, with excellent land and many good farms (Smith 1846: 32). Heart Lake Road would have been opened as settlement increased on the adjacent lots and settlers completed their settlement duties which included clearing the portion of the road which fronted each property.

The earliest settler to clear the road in the study area was Richard Stinson in 1827 on the east half of Lot 16, Concession 2 East (Laing et al. 2014: 22). Due to the swampy areas, it is likely that once the rest of clearing was completed a corduroy road was constructed to pass over the soft wet ground. The construction of the corduroy roads during this period involved laying tree trunks side by side with earth dug from the side of the road and laid over top of the logs securing the logs and creating a ditch (Laing et al. 2014: 29).

Growth and increased accessibility to settlement came to township with the opening of Grand Trunk Railway (G.T.R.) line. This was furthered with construction of a station at Brampton in 1856. Brampton had been incorporated as a village three years prior and had a central location within the township. That same year, Hurontario Street had been planked from Port Credit through Brampton to Edmonton. Through the railway line farmers could distribute their agricultural goods to a larger market and access to the City of Toronto increased (Loverseed 1987: 43). This economic boom in Brampton brought entrepreneurs and industries to the village in the 1850s and 1860s. In 1860,

Cultural Heritage November 2019

Edward Dale started a flower nursery in the village, and became the largest employer in Brampton (City of Brampton; online). Market gardening developed as a large industry in Brampton and by the end of the 19th century it became known as the "Flower town of Canada" (City of Brampton; online).

In 1867, the County of Peel separated from York, becoming its own governing entity with Brampton as the county town (Loverseed 1987: 24). Brampton was officially incorporated as town in 1873, with John Haggert as the first mayor (City of Brampton; online). The Credit Valley Railway, was constructed from 1877 to 1879, connecting Toronto and Orangeville with a station in Brampton (Heritage Mississauga Railways in Mississauga; online). The line furthered development in Brampton but took away people and business from smaller communities in the township that witnessed a decline. The closest settlement to the study area was Mayfield, which was considered a small community when compared to Brampton. By 1877, it had a population of 50 including a schoolhouse, general store, post office, blacksmith shop, and hotel (Pope 1877: 91). The population of the township remained stable in the late 19th century, slightly decreasing from population of 6,397 in 1861, to 6,129 in 1871 (Pope 1877: 84).

5.1.3.2 20th Century

At the turn of the century the Township of Chinguacousy witnessed a change in settlement patterns as retired farmers began to move into the City and surrounding villages. This occurred along a shift in the specialization of agriculture and industries. It also characterized the greatest period of growth for Brampton during the 20th century occurred after the Second World War. With the construction of several major highways, and Brampton's proximity to the City of Toronto, the development of subdivisions and increased ownership of automobiles changed the landscape Brampton (City of Brampton; online).

Adjacent to the study area, Heart Lake Conservation Area (HLCA) was established in 1956 when the Metropolitan Toronto and Region Conservation Authority (MTRCA) purchased roughly150 acres of land from Allan Taylor (HCLA Master Plan Advisory Committee; online). The HCLA was formed to protect, conserve, and restore the valuable ecological features and functions of the site, while guiding the current and potential future public uses of the area (HCLA Master Plan Advisory Committee; online). The HCLA opened to the public in 1957 (Laing et al. 2014: 38). By 1982, nine additional tracts of land were purchased, for a total of nearly 425 acres, from T.B. Ingoldsby, H.C. Parkinson, M.J. Hunter, G. Rayner, the Township of Chingaucousy, Agrob. Investments Ltd., City of Brampton, the Regional Municipality of Peel, and the Ministry of the Environment (HLCA Master Plan Advisory Committee; online).

The City was incorporated in 1974 with the amalgamation of the former Town of Brampton, parts of the former Town of Mississauga, and the former Townships of Toronto Gore and Chinguacousy (City of Brampton 2013: 2.1). In the 1980s and 1990s subdivisions developed on farmlands surrounding the City, converting rural lands into an urban landscape. Adjacent to the study area, in the 1970s, the Village of Heart Lake was formed between Hurontario Road and Heart Lake Road (Laing et al. 2014: 39). The population of the City continued to grow into the 21st century, increasing from 433,806 in 2006, to 523,911 in 2011 (Statistics Canada; online).

5.1.4 Site Description

The study area is comprised of Heart Lake Road from Sandalwood Parkway East to Mayfield Road, including areas captured by current development proposals on the east side of the road, environmentally sensitive areas, and relevant portions of the adjacent transportation network. This area is broadly bordered by Highway 410 and recent residential development on the east, Sandalwood Parkway and residential development on the south, residential development on the west, including TRCA lands to the west, and Mayfield Road and agricultural land on the north. This section of Heart Lake Road is visually distinct from the surrounding lands since it is mostly bordered by natural areas that have not been used for residential development.

The study area is generally bordered by naturalized lands that exhibit a wide variety of ecology including wetlands, kettle lakes, treed ridges, forested areas, and rolling agricultural fields. The south end of the study area features

Cultural Heritage November 2019

wet lands on both sides of the road (**Figure 24**). In general, the west wide of the road (**TRCA** lands) feature higher ground with treed ridges and forested areas while the east side is mainly comprised of wet land (**Figure 25**). A church and a garden centre are located on the east side of the road (**Figure 26** and **Figure 27**). Both developments appear to be relatively recent and are not related to historical land use along Heart Lake Road.

The entrance to the Heart Lake Conservation area is located on the west side of the road, just north of the garden centre (**Figure 28**). The entrance features a triangular shaped driveway that is bordered by split rail fences (**Figure 29**). Split rail fencing is used intermittently along the west side of the road on the border of the TRCA lands (**Figure 30**).

The lands included in the Metrus Developments (residential) parcel are located south of Countryside Drive, east of Heart Lake Road. These lands consist of wet land and higher ground that appears to have once been used as agricultural fields (**Figure 31**, **Figure 32** and **Figure 33**). This parcel of land contains a remnant tree lined driveway that once led to a farmstead on the east side of Heart Lake Road (see **Figure 32**).

North of Countryside Drive, the landscape changes to be predominantly rolling agricultural fields on the east side of the road and undulating forested land on the west side (**Figure 34** and **Figure 35**). The lands within the Emery Developments (employment) parcel consist mainly of former agricultural land with rolling topography (**Figure 36** and **Figure 37**).

The Khalsa School parcel is located north of the Emery Developments parcel and south of an existing residential property. The Khalsa School parcel is mainly comprised of rolling agricultural land (**Figure 38** and **Figure 40**). The Starbright Developments (Employment) parcel is visible through the Khalsa School parcel. These lands appear to consist mainly of rolling agricultural fields divided by a water course and associated wet lands that cross the middle of the property parcel in a general southeast-northwest direction.

The north section of the study area is bordered by a forested area on the west side of the road and residential development on the east side (**Figure 39**). The residential development on the east side appears to date to the mid-20th century. A mid-century modern residence is located on the northwest corner of Heart Lake Road and Mayfield Road. This section of the study area also features numerous kettle lakes, which are located between the residential properties.

Figure 24: View Looking SE along Heart Lake Rd towards Sandalwood Pwy E

Figure 25: View looking NW along Heart Lake Rd showing wetland (right) and treed ridge (left)

Figure 26: View NW of Heart Lake Rd showing the Heart Lake Seventh Day Adventist Church (right) and treed ridge (left)

Figure 27: NW View of Heart Lake Rd showing the Lakeside Garden Gallery (right)

Figure 28:NW View of Heart Lake Rd showing wetland (right) and entrance to the Heart Lake Conservation Area (left)

Figure 29: Entrance to the Heart Lake

Figure 30: Example of split rail fences located along Conservation Area

Figure 31: NW View of Heart Lake Rd showing the lands within Metrus Developments (Residential) parcel on the right

Figure 32: SE View of Heart Lake Rd showing the lands within Metrus Developments (Residential) parcel on the left. Note the remnant tree lines and driveway.

Figure 33: NW View towards Countryside Dr showing the lands within Metrus Developments (Residential) parcel on the right

Figure 34: Example of Tree Ridge/High Ground in the Heart Lake Conservation Area on the west side of Heart Lake Road

Figure 35: NE View of Rolling Agricultural

Figure 36: NW View of Heart Lake Road showing Lands included in the Emery Developments (Residential) Parcel (right)

Figure 37: NW View of Heart Lake Rd showing Lands included in the Emery Developments (Residential) Parcel (right) and Khalsa School (far right)

Figure 38: East View from Heart Lake Rd showing Lands included in the Khalsa School Parcel

Figure 40: East View of the Khalsa School Parcel Figure 39: NW View of Heart Lake Rd

5.1.5 Heritage Evaluation

5.1.5.1 Ontario Regulation 9/06

The criteria for determining Cultural Heritage Value or Interest (CHVI) are defined by *Ontario Regulation 9/06* (O. Reg. 9/06) (Government of Ontario 2006b). If a property meets one or more of the below criteria than it merits designation under Part IV of the *Ontario Heritage Act*.

In order to identify CHVI at least one of the following criteria must be met:

- 1. The property has design value or physical value because it:
 - a. is a rare, unique, representative or early example of a style, type, expression, material or construction method;
 - b. displays a high degree of craftsmanship or artistic merit; and
 - c. demonstrates a high degree of technical or scientific achievement.
- 2. The property has historical value or associative value because it:
 - a. has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community;
 - b. yields, or has the potential to yield, information that contributes to an understanding of a community or culture; and
 - c. demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.
- 3. The property has contextual value because it:
 - a. is important in defining, maintaining or supporting the character of an area;
 - b. is physically, functionally, visually or historically linked to its surroundings; and
 - c. is a landmark.

5.1.5.2 Evaluation According to Ontario Regulation 9/06

Table 19 identifies which criteria of Ontario Regulation 9/06 are met (Government of Ontario 2006b).

Table 19:	Criteria of Ontario	Regulation	9/06 Compliance
-----------	---------------------	-------------------	-----------------

Criteria of Ontario Reg. 9/06			
Is a rare, unique, representative or early example of a style, type, expression, material or construction method	Ν		
Displays a high degree of craftsmanship or artistic merit	Ν		
Demonstrates a high degree of technical or scientific achievement	Ν		
Has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community	Y		
Yields, or has the potential to yield, information that contributes to an understanding of a community or culture	Y		
Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community	Ν		
Is important in defining, maintaining or supporting the character of an area	Y		
Is physically, functionally, visually or historically linked to its surroundings	Y		
Is a landmark	Y		

5.1.5.3 Design or Physical Value

Heart Lake Road does not illustrate or exemplify a style, type, expression, material or construction method. It is highly likely that this road was once a corduroy road. However, road improvements completed in the mid-20th century and in 1987 have removed evidence of this early road construction technique. The present physical conditions of Heart Lake Road, including two lanes of traffic, gravel shoulder, and ditching, are typical of other rural roads in the City of Brampton. Therefore, Heart Lake Road does not meet criterion 1.i of O. Reg. 9/06.

Heart Lake Road does not display a high degree of craftsmanship or artistic merit. The road has standard paving and shoulders and does not have details that are greater than normal quality or are that are implemented at an intensity above an industry standard. Therefore, Heart Lake Road does not meet criterion 1.ii of O. Reg. 9/06.

Heart Lake Road does not display a high degree of technical or scientific achievement. The existing conditions of the road evolved through time from an unimproved concession road in the 19th and early-mid 20th century to an improved road in the mid-20th century. It is likely that road improvements to Heart Lake Road were completed in response to the opening of the HLCA in 1957 since increased traffic along this section of the road was anticipated. The existing conditions of Heart Lake Road reflect the road improvements carried out in the mid-20th century. The construction methods used to improve the road do not display a high degree of technical expertise, adaptation of materials, forms, or spatial arrangements, or a breakthrough in design or construction techniques. Therefore, Heart Lake Road does not meet criterion 1.iii of O. Reg. 9/06.

5.1.5.4 Historic or Associative Value

Heart Lake Road is historically associated with the theme of early road building in the Town of Chinguacousy and has direct associations with the Heart Lake Conservation Area and the TRCA.

Regarding Euro-Canadian history, there were three successive attempts to settle the Heart Lake Road area. The first attempts were made by John Pettit Jr, George Coon, and Thomas Graham in 1819. All three landowners were unable to settle the land and returned their grants since the land was too swampy to settle, which made farming difficult if not impossible (City of Brampton 2014: 7-8). Richard Stinson successfully settled Concession 2E, east quarter of Lot 16 between 1823 and 1827. King's College (subsequently the University of Toronto) was granted a Crown patent for 200 acres in 1828. King's College subsequently subdivided the lot and sold it off during the mid-19th century. The swampy nature of Heart Lake Road, and the difficulties experienced by early settlers, support the claim that Heart Lake Road was originally constructed as a corduroy road. 19th century corduroy roads consisted of laying young trees (cut in similar size) side by side across a road to create a passable surface. This construction technique was reserved for areas with soft, swampy ground that could not be drained. While no direct evidence (i.e. archival photos, maps, or travelers accounts) exists to definitively prove that Heart Lake Road was a corduroy road, it is highly likely that this road construction technique was used here due to the undulating topography and historically documented swampy conditions.

In addition to the historical theme of early road building, Heart Lake Road is directly associated with the TRCA. The Heart Lake Conservation Area was formed in 1956 and was opened to the public in 1957. Mid-century improvements to Heart Lake Road were likely complete in response to the opening of the conservation area. Presently, Heart Lake Conservation Area is one of the largest natural green space areas in the City of Brampton. In relation to the Study Area, the entire west side of the Heart Lake Road between Sandalwood Parkway and Mayfield Road is owned and operated by the TRCA. Therefore, Heart Lake Road meets criterion 2.i of O. Reg. 9/06 due to the likelihood that Heart Lake Road is historically associated with the theme of early road construction, specifically corduroy roads, in the Township of Chinguacousy and the direct historical association with the TRCA.

Heart Lake Road has the potential to yield, information that contributes to an understanding of a community or culture. As identified in the draft listing report prepared by the City of Brampton, Heart Lake Road and its surrounding lands have archaeological potential and known archaeological sites related to the Paleo-Indian Period (10000-7000 BC), Archaic Period (7000-1000 BC), Initial Woodland Period (1000 BC to AD 700), and Late Woodland Period (AD 700-1651) are well documented in the area. Specifically, a high number of Indigenous campsites from the Archaic Period were discovered in the area by the TRCA during 2007 excavations of the Heart Lake Road Conservation Area, which has resulted in the area being dubbed "The Stopover Site" (2014). Therefore, Heart Lake Road meets criterion 2.ii of O. Reg. 9/06 due to the potential to yield archaeological information that will contribute to an understanding of Indigenous history in the area.

Heart Lake Road was an unimproved concession road until the mid-20th century when it was improved, likely in response to the opening of the Heart Lake Road Conservation Area in 1957. The road was subsequently rebuilt and paved in 1987 (City of Brampton 2014:11). Heart Lake Road evolved through time and does not reflect the work or ideas of a builder or theorist. Therefore, Heart Lake Road does not meet criterion 2.iii of O. Reg. 9/06.

5.1.5.5 Contextual Value

Heart Lake Road, between Sandalwood Parkway and Mayfield Road is important in maintaining and supporting the character of the surrounding landscape. Although improved and updated, Heart Lake Road still maintains its rural road cross section with two lanes of traffic, gravel shoulders, and ditches. As a rural road, Heart Lake Road supports and maintains the significant natural areas on the east and west sides of the road, which are now rare in the City of Brampton. Specifically, the Heart Lake Road Conservation Area, located on the west side of Heart Lake Road, is an Environmentally Significant Area (ESA), Provincially Significant Wetland (PSW), and Area of Natural and Scientific

Cultural Heritage November 2019

Interest (ANSI). Heart Lake Conservation Area contains six provincially rare vegetative community types, the remaining portions of Brampton Buried Esker, and 26 species of threatened bird species, including the Barn Swallow and Trumpeter Swans. The Eastern Snapping Turtle and Eastern Milksnake are found at the Heart Lake Conservation Area; both are provincially and nationally designated species of Special Concern. Over 48% of the conservation area is covered with forest, which is rare since most forests within Peel Region were cleared for agricultural purposes during the 19th century (City of Brampton 2014:11). The rural setting of Heart Lake Road, including the TRCA lands on the west side of the road and mix of agricultural lands and forested kettle lakes on the east side of the road support and maintain the significant natural heritage value present along the road between Sandalwood Parkway and Mayfield Road. The continuing rural and relatively undeveloped setting of the road is unique in the City of Brampton, which has become increasingly urbanized. Accordingly, Heart Lake Road meets criterion 3.i of O. Reg. 9/06.

Heart Lake Road is functionally, visually, and historically linked to its surroundings. The road is functionally and historically linked to its surrounding context since it has been used as a rural road since the road was opened in 1819. With the exception of the physical condition of the road, which was improved in the mid-20th century and again in 1987, the surrounding context of Heart Lake Road has remained remarkably intact. Specifically, the forested lands on the west side of the road and the agricultural lands, kettle lakes, and wetlands on the east side of the road are rare within the City of Brampton. In addition, Heart Lake Road is visually linked to its surroundings. The rural character of the road, the conservation area on the west, and open rural/agricultural land on the east together create a unique roadscape that is primarily defined by its naturalized, undeveloped character. Accordingly, Heart Lake Road meets criterion 3.ii of O. Reg. 9/06.

Heart Lake Road acts as a landmark within the City of Brampton. The section of Heart Lake Road between Sandalwood Parkway and Mayfield is visually distinctive from surrounding roads. Heart Lake Road is bordered by development to the east, south, and west. Highway 410 borders Heart Lake Road to the north. Despite the surrounding development, Heart Lake Road retains its rural cross section and offers views to the adjacent natural heritage resources, including forests, kettle lakes, wetlands, and agricultural fields. The natural setting of Heart Lake Road is distinctive and is notable to those travelling along this section of the road. Heart Lake Road is a popular route for cyclists and the conservation area is a popular destination with more than five million visitors since it opened in 1957 (City of Brampton 2018). Therefore, Heart Lake Road meets criterion 3.iii of O. Reg. 9/06.

5.2 SUMMARY OF EVALUATION

Heart Lake Road, between Sandalwood Parkway and Mayfield Road met five criteria (2.i, 2.ii, 3.i, 3.ii, and 3.iii) of O. Reg. 9/06. Therefore, Heart Lake Road has CHVI for historical/associative and contextual reasons and may be considered for designation by the City of Brampton under Part IV of the *Ontario Heritage Act*.

5.3 STATEMENT OF CULTURAL HERITAGE SIGNIFICANCE

Heart Lake Road is a two-lane, rural road set in a significant natural setting that has strong historical associative value and contextual heritage value. Its historical value is related to its associations with early road building techniques in the City of Brampton and the TRCA through its connection to the Heart Lake Road Conservation Area. Heart Lake Road and its surrounding land has also yielded, and has potential to further yield, information regarding Indigenous land use and culture due to the archaeological potential of the area and high number of archaeological sites dating to the Archaic period.

Historically, there were three successive attempts to settle the Heart Lake Road area. The first attempts were made by John Pettit Jr, George Coon, and Thomas Graham in 1819. All three landowners were unable to settle the land and returned their grants since the land was too swampy to settle, which made farming difficult if not impossible (City of Brampton 2014: 7-8). Richard Stinson successfully settled Concession 2E, east quarter of Lot 16 between 1823 and 1827. King's College (subsequently the University of Toronto) was granted a Crown patent for 200 acres in 1828. King's College subsequently subdivided the lot and sold it off during the mid-19th century. The swampy nature of Heart Lake Road, and the difficulties experienced by early settlers, support the claim that Heart Lake Road was originally constructed as a corduroy road. 19th century corduroy roads consisted of laying young trees (cut in similar size) side by side across a road to create a passable surface. This construction technique was reserved for areas with soft, swampy ground that could not be drained. While no direct evidence (i.e. archival photos, maps, or travelers accounts) exists to definitively prove that Heart Lake Road was a corduroy road, it is highly likely that this road construction technique was used here due to the undulating topography and historically documented swampy conditions.

Heart Lake Road has direct, historical associations with the TRCA. The Heart Lake Conservation Area was formed in 1956 and was opened to the public in 1957. Mid-century improvements to Heart Lake Road were likely completed in response to the opening of the conservation area. Presently, Heart Lake Conservation Area is one of the largest natural green space areas in the City of Brampton. The entire west side of the Heart Lake Road between Sandalwood Parkway and Mayfield Road is owned and operated by the TRCA.

Heart Lake Road has the potential to yield information that contributes to an understanding of a community or culture. As identified in the draft listing report prepared by the City of Brampton, Heart Lake Road and its surrounding lands have archaeological potential and known archaeological sites related to the Paleo-Indian Period (10000-7000 BC), Archaic Period (7000-1000 BC), Initial Woodland Period (1000 BC to AD 700), and Late Woodland Period (AD 700-1651) are well documented in the area. Specifically, a high number of Indigenous campsites from the Archaic Period were discovered in the area by the TRCA during 2007 excavations of the Heart Lake Road Conservation Area, which has resulted in the area being dubbed "The Stopover Site" (City of Brampton 2014).

Heart Lake Road has contextual value since it maintains and supports the surrounding natural character of the area, is functionally, visually, and historically linked to its surroundings, and acts as a landmark. Heart Lake Road retains its rural cross section and is surrounded by significant natural land, including forested land on the west and agricultural land, kettle lakes, and wetland on the east. When considered together with its rare surroundings, Heart Lake Road is a unique roadscape within the City of Brampton.

Heart Lake Road, between Sandalwood Parkway and Mayfield Road is important in maintaining and supporting the character of the surrounding landscape. Although improved and updated, Heart Lake Road still maintains its rural

Cultural Heritage November 2019

road cross section with two lanes of traffic, gravel shoulders, and ditches. As a rural road, Heart Lake Road supports and maintains the significant natural areas on the east and west sides of the road, which are now rare in the City of Brampton. Specifically, the Heart Lake Road Conservation Area, located on the west side of Heart Lake Road, is an Environmentally Significant Area (ESA), Provincially Significant Wetland (PSW), and Area of Natural and Scientific Interest (ANSI). Heart Lake Conservation Area contains six provincially rare vegetative community types, the remaining portions of Brampton Buried Esker, and 26 species of threatened bird species, including the Barn Swallow and Trumpeter Swans. The Eastern Snapping Turtle and Eastern Milksnake are found at the Heart Lake Conservation Area; both are provincially and nationally designated species of Special Concern. Over 48% of the conservation area is covered with forest, which is rare since most forests within Peel Region were cleared for agricultural purposes during the 19th century (City of Brampton 2014:11). The rural setting of Heart Lake Road, including the TRCA lands on the west side of the road and mix of agricultural lands and forested land, and kettle lakes on the east side of the road support and maintain the significant natural heritage value present along the road between Sandalwood Parkway and Mayfield Road. The continuing rural and relatively undeveloped setting of the road is unique in the City of Brampton, which has become increasingly urbanized.

Heart Lake Road is functionally, visually, and historically linked to its surroundings. The road is functionally and historically linked to its surrounding context since it has been used as a rural road since the road was opened in 1819. With the exception of the physical condition of the road, which was improved in the mid-20th century and again in 1987, the surrounding context of Heart Lake Road has remained remarkably intact. Specifically, the forested lands on the west side of the road and the agricultural lands, kettle lakes, and wetlands on the east side of the road are rare within the City of Brampton. In addition, Heart Lake Road is visually linked to its surroundings. The rural character of the road, the conservation area on the west, and open rural/agricultural land on the east together create a unique roadscape that is primarily defined by its naturalized, undeveloped character.

Heart Lake Road acts as a landmark within the City of Brampton. The section of Heart Lake Road between Sandalwood Parkway and Mayfield is visually distinctive from surrounding roads. Heart Lake Road is bordered by development to the east, south, and west. Highway 410 borders Heart Lake Road to the north. Despite the surrounding development, Heart Lake Road retains its rural cross section and offers views to the adjacent natural heritage resources, including forests, kettle lakes, wetlands, and agricultural fields. The natural setting of Heart Lake Road is distinctive and is notable to those travelling along this section of the road. Heart Lake Road is a popular route for cyclists and the conservation area is a popular destination with more than five million visitors since it opened in 1957 (City of Brampton 2018).

5.4 HERITAGE ATTRIBUTES

Based on the evaluation of CHVI, the following heritage attributes were identified for Heart Lake Road between Sandalwood Parkway and Mayfield Road:

- Rural cross section of the road, including the width of the road, two lanes of traffic, and ditching (where present);
- Bend in the road to avoid TRCA wetland, approximately 500 m southeast of Mayfield Road;
- Intermittent presence of split rail and post-and-rail fencing along the roadside;
- Wood utility poles along the roadside;
- Natural topography of adjacent lands, including the remaining sections of the Brampton Buried Esker;
- Potential, and known, archaeological sites;
- Likely historical association with corduroy road construction techniques;
- Historical association with the Heart Lake Conservation Area and TRCA;
- Linear corridor views along Heart Lake Road, bordered by significant natural areas; and
- Natural setting of the roadscape, including forests, wetlands, and kettle lakes on the west side of the road and wetlands, agricultural fields, and kettle lakes on the east side of the road.

Evaluation of Alternatives November 2019

6.0 EVALUATION OF ALTERNATIVES

6.1 ROAD CLASSIFICATION

Table 20 presents the characteristics of roads in relation to their classification. Currently, Heart Lake Road is classified as an arterial road. According to **Table 20**, the main characteristics associated to minor arterials are the followings:

- Typical daily motor vehicle traffic volume (both directions) is between 8,000 and 20,000 vehicles per day;
- The minimum number of peak period lanes (excluding bicycle lanes) is two lanes;
- Flow is uninterrupted except at signals and crosswalks;
- The legal speed limit is between 40 and 60 km/h;
- There are generally no restrictions for heavy trucks;
- Wide curb lane or special facilities are desirable for cyclists.

Based on analysis presented in the previous chapters, the following issues and challenges are noted on Heart Lake Road:

- Heart Lake Road has CHVI for historical/associative and contextual reasons and may be considered for designation by the City of Brampton under Part IV of the Ontario Heritage Act;
- Heart Lake Road, between Sandalwood Parkway and Countryside Drive, is known as a "hotspot" for wildlife mortality;
- Daily traffic (both directions) is approximately 7,000 veh/day and is not expected to grow significantly;
- Vehicles travelling on Heart Lake Road currently exceed the speed limit, which reduces safety on the corridor;
- Heart Lake Road is identified as a candidate for bicycle lane in the latest City of Brampton Transportation Master Plan; and
- Heavy trucks are prohibited on Heart Lake Road.

Based on the above, it is recommended that Heart Lake Road, between Mayfield Road and Bovaird Drive, be classified as a collector road. An amendment should be made to Schedule B of the Official Plan to identify this recommended roadway classification.

The proposed road classification of Heart Lake Road makes it possible to develop alternatives capable of responding to issues and challenges listed above while being in line with road classification criteria shown in **Table 20**. A posted speed of 50 km/hr is then recommended along the corridor.

Evaluation of Alternatives November 2019

Table 20: Road Classification Criteria

Characteristic	Locals	Collectors	Minor Arterials	Major Arterials	Expressways
Traffic movement versus property access	Property access primary function	Traffic movement and property access of equal importance	Traffic movement primary consideration; some property access control	Traffic movement primary consideration; subject to property access control	Traffic movement primary consideration; no property access
Typical daily motor vehicle traffic volume (both directions)	<2,500	2,500 -8,000	8,000 - 20,000	> 20,000	> 40,000
Minimum number of peak period lanes (excluding bicycle lanes)	One (One-way streets) or two	One (one-way streets) or two	Two	Four	Four
Desirable connections	Locals, collectors	Locals, collectors, arterials	Collectors, arterials	Collectors, arterials, expressways	Major arterials, expressways
Flow characteristics	Interrupted flow	Interrupted flow	Uninterrupted except at signals and crosswalks	Uninterrupted except at signals and crosswalks	Free-flow (grade separated)
Legal speed limit, km/h	40 - 50	40 - 50	40 - 60	50 -602	80 - 100
Accommodation of pedestrians	Sidewalks on one or both sides	Sidewalks on both sides	Sidewalks on both sides	Sidewalks on both sides	Pedestrians prohibited
Accommodation of cyclists	Special facilities as required		Wide curb lane or special facilities desirable	Cyclists prohibited	
Surface transit	Generally not provided	Permitted	Preferred	Preferred	Express buses only
Surface transit daily passengers	Not applicable	<1,500	1,500 - 5,000	> 5,000	Not applicable
Heavy truck restrictions (e.g. seasonal or night time)	Restrictions preferred	Restrictions permitted	Generally no restrictions	Generally no restrictions	No restrictions
Typical spacing between traffic control devices ² , m	0 - 150	215 - 400	215 - 400	215 - 400	Not applicable
Typical right-of-way width, m	15- 22	20 - 27	204 -305	204 -455	> 455

Notes:

1. Private roads and lanes (public or private) are not part of this classification system.

2. A number of major arterial roads have speed limits which fall outside this range, as noted in Table 2: Speed Limit.

3. Traffic control devices refer to traffic control signals, pedestrian crossovers and 'Stop' signs.

4. 20 m rights-of-way exist on many downtown or older arterial roads. New arterial roads should have wider rights-of-way.

5. Wider rights-of-way (within the ranges given) are sometimes required to accommodate other facilities such as utilities, noise mitigation installations, bicycle facilities, and landscaping. For new streets, wider rights-of-way (upper end of ranges given) should be considered to accommodate such facilities.

Source: City of Toronto, Road Classification System, Summary Document, August 2013

Evaluation of Alternatives November 2019

6.2 CATEGORIES OF ALTERNATIVES

Based on findings made in Chapters 3, 4 and 5, the alternatives were divided into three (3) categories:

- Active transportation to increase the mobility of people with alternative modes to motorized vehicle;
- Traffic calming to increase safety on the corridor; and
- Wildlife treatment to reduce wildlife mortality.

All these alternatives should maintain the cultural heritage attributes described in Section 5.4.

6.3 LIST OF ALTERNATIVES

6.3.1 Development of Alternatives

The following alternatives were developed for each category:

- 1. Active transportation:
 - A. Do nothing;
 - B. Two Lanes with Paved Shoulders and Rumble Strips (Figure 41);
 - C. Two Lanes with Separated Bike Lanes (Figure 42);
 - D. Two Lanes with Separated Bi-directional Multi-Use Path on one side (Figure 43);
 - E. Narrow Roadway with Shared Roadway Markings and Signs (Figure 44);
 - F. Hybrid Multi-Use Trail in Heart Lake Conservation Area (Figure 45); and
 - G. One-way operation with Separated Bike Lanes (Figure 46 and Figure 47).
- 2. Traffic calming:
 - A. Do nothing;
 - B. Stop control or mini roundabouts at intersections (Heart Lake Conservation Area/Access to new residential development) (see mini roundabout proposed at access to HLCA access in **Figure 48**
 - C. Speed cushions/lane narrowing with rumble strips;
 - D. Traffic deflection at Countryside Drive/One-way operation with separated bike lanes;
 - E. Roundabout at Countryside Option 1 (with encroachment on TRCA lands) (Figure 49); and
 - F. Roundabout at Countryside Option 2 (without encroachment on TRCA lands) (Figure 50).
- 3. Wildlife treatment:
 - A. Do nothing;
 - B. Maintain solar powered flashing amber lights;
 - C. Maintain pavement markings (optical speed bars);
 - D. Additional eco-passage tunnel(s);
 - E. Wildlife directional fencing; and
 - F. Turtle nesting mounts.

Figure 41: Alternative 1.B | Two Lanes with Paved Shoulders and Rumble Strips

Figure 42: Alternative 1.C | Two Lanes with Separated Bike Lanes

Figure 43: Alternative 1.D | Two Lanes with Separated Bi-directional Multi-Use Path on one side

Figure 44: Alternative 1.E | Narrow Roadway with Shared Roadway Markings and Signs

Figure 45: Alternative 1.F | Hybrid Multi-Use Trail in Heart Lake Conservation Area

Figure 46: Alternative 1.G | One-way Operation with Separated Bike Lanes

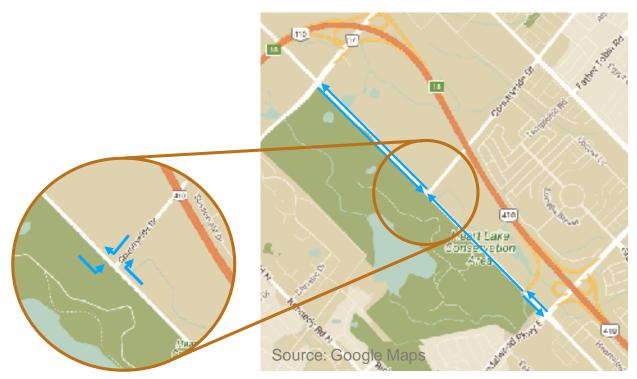


Figure 47: Alternative 1.G | Proposed Road Network

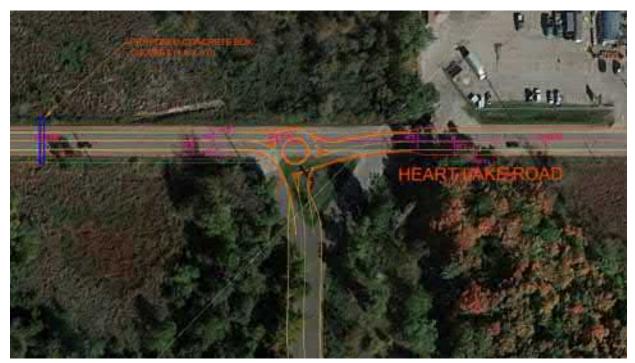


Figure 48: Mini Roundabout Proposed at Access to HLCA

Figure 49: Roundabout at Countryside Option 1 (with encroachment on TRCA lands)

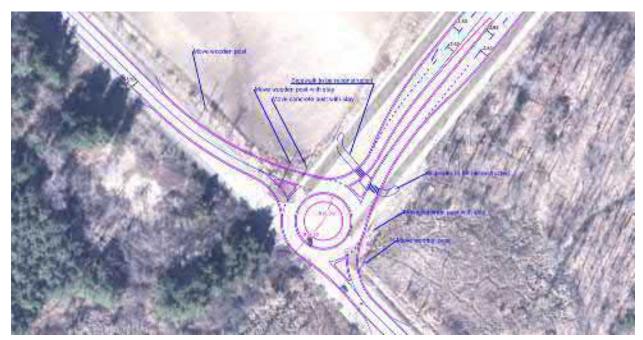


Figure 50: Roundabout at Countryside Option 2 (without encroachment on TRCA lands)

Evaluation of Alternatives November 2019

6.3.2 Screening of Alternatives

A screening evaluation process is used to identify feasible alternatives to be carried forward to a more detailed evaluation. The screening evaluation is generally based on a reasoned argument approach that considers the multimodal transportation opportunities within the study area, and the social, cultural and natural environments, including potential impacts to significant environmental features.

Three sets of assessments were conducted to examine potential solutions for each of the study objectives including enhancing active transportation, traffic calming and reducing wildlife mortality. **Table 21**, **Table 22** and **Table 23** present a description of each of the alternatives as well as results of screening evaluation.

Alternative	Description of Alternative	Results of Screening Evaluation	Alternative Carried Forward?
1.A Do Nothing	The Do Nothing alternative maintains existing operations along Heart Lake Road, with no provisions for cycling, walking, and does not conform to municipal transportation master plan vision.	This alternative is not being carried forward because it does not meet the study purpose or objective of reducing speed on Heart Lake Road or providing cycling infrastructure. No changes to the land use, natural or social environment adjacent to the study area.	• No
1.B Two Lanes with Paved Shoulders and Rumble Strips	Vehicular lane to be narrowed to 3.3 m with the introduction of a painted 0.5 m rumble strip buffer and 1.5 m paved shoulder for cycling with another 0.5 m of unpaved shoulder.	This alternative supports the study purpose of reducing speed on Heart Lake Road (by narrowing the vehicle lanes) and provides cycling infrastructure on the roadway to accommodate for future development needs. However, this solution only moderately addresses active transportation safety. No changes to the land use, natural or social environment adjacent to the study	• Yes; long term solution (dependent on future land development and cycling demand)
1.C Two Lanes with Separated Bike Lanes	Vehicular lane to be narrowed to 3.3 m and the addition of a 0.5 m buffer with flex bollards and 1.5 m paved dedicated bicycle lane and another 0.5 m of unpaved shoulder.	area. This alternative supports the study purpose of reducing speed on Heart Lake Road (through the use of flex bollards adjacent to the roadway) and provides cycling infrastructure on the roadway to support future development needs. This solution also provides enhanced improvements which addresses active transportation safety. No changes to the land use, natural or social environment adjacent to the study	 Yes; long term solution (dependent on future land development and cycling demand)
1.D Two Lanes with Separated Bi- directional Multi- Use Path on one side	Vehicular lane to be narrowed to 3.3 m and a 3.0 m bi- directional multi-use facility would be placed on either the east or west side of the roadway with a 0.5 m shoulder buffer. This would require the vehicular lanes to be shifted to the east of west side.	area. This alternative supports the study purpose of reducing speed on Heart Lake Road and provides cycling infrastructure on the roadway to provide for future development needs. This solution also provides enhanced improvements to active transportation safety. No changes to the land use, natural or social environment adjacent to the study area.	• Yes; long term solution (dependent on future land development and cycling demand)

Table 21: Assessment of Active Transportation Alternatives

Evaluation of Alternatives November 2019

Alternative	Description of Alternative	Results of Screening Evaluation	Alternative Carried Forward?
1.E Narrow Roadway with Shared Roadway Markings and Signs	Vehicular lane to be narrowed to 3.3 m and the overall paved width of the roadway gets narrowed with traffic calming measures along the roadway including speed cushions and mini-roundabouts.	This alternative supports the study purpose of reducing speed on Heart Lake Road and provides minor cycling infrastructure on the roadway. However, this solution provides only minor improvements to active transportation safety with cyclists operating in mixed-traffic. It relies on the effectiveness of traffic calming measures.	 Yes; long term solution (dependent on future land development and cycling demand)
		No changes to the land use, natural or social environment adjacent to the study area.	
1.F Hybrid Multi-Use Trail in Heart Lake Conservation Area	Multi-use trail connections between existing boulevard paths along Countryside Drive and Sandalwood Parkway to connect to the existing internal trail within Heart Lake Road Conservation Area.	This alternative would enhance active transportation connections to and from the corridor to the Heart Lake Conservation Area which is the primary trip generator along the corridor currently. In terms of the roadway cross-section, this alternative will result in Heart Lake Road being mostly unchanged beyond intersection improvements at Heart Lake Road and Countryside Drive.	Yes; short term solution
		No changes to the land use, natural or social environment adjacent to the study area.	
1.G One-way operation with Separated Bike Lanes	Heart Lake Road operate as one-way going northbound between Sandalwood Parkway and Countryside Drive.	 Benefits Provides a safer cycling environment along Heart Lake Road; Prevents through traffic along Heart Lake Road between Sandalwood Parkway and Mayfield Road. Inconvenient: Vehicular accessibility to / from the Heart Lake Road Conservation Area is reduced: Vehicles headed SB from the Conservation Area must head northbound and detour through Dixie Road, Kennedy Road, or Highway 410, causing significant delay; Vehicles entering the Conservation Area from the north will need to use Highway 410 or detour through Sandalwood Parkway. Detours will increase the distance travelled and vehicle emissions Detours will exacerbate traffic operations at nearby intersections. 	• No

Table 21: Assessment of Active Transportation Alternatives

Alternative	Description of Alternative	Results of Screening Evaluation	Alternative Carried Forward?
2.A Do Nothing	Existing vehicular lane width of 3.5 m make it comfortable for cars and promote faster speeds. No cycling infrastructure in place.	This alternative does not satisfy the study objective and does not provide any measures to reduce traffic speed along the corridor. Existing speed limit compliance is currently 11%.	• No
2.B Stop control or mini roundabouts at intersections (Heart Lake Conservation Area/Access to New Residential Development)	Stop signs or traffic circle at Heart Lake Road and Conservation Area Entrance. Posted speed limit to 50 km/h.	This alternative could satisfy the study objectives if a traffic circle is the measure implemented at the intersections (and not a stop sign). A traffic circle would calm traffic at the Heart Lake Conservation Area entrance. A stop sign is not warranted here and would risk issues of non-compliance. Mini roundabouts should be considered for future major development accesses to Heart Lake Road.	 Yes Sort-term: Implement traffic circle at Heart Lake Conservation Entrance Long-term: Consider traffic circle at major development accesses to Heart Lake Road
2.C Speed cushions/ lane narrowing with rumble strips	Raised sections of the roadway designed to discourage motor vehicle drivers from travelling at excessive speeds. Reduce speed limit to 50 km/h. Existing vehicular lane width would be narrowed to 3.3 m along with rumble strips to give physical and auditory cues to drivers. Posted speed limit to 50 km/h. Speed cushions will need to include the installation of proper signage to ensure safety due to lack of street lighting along this roadway.	This alternative satisfies the study purpose of reducing the operating speed limit on the roadway and is a recognized measure. The roadway would need to be re-classified as a local collector road as speed cushions and lane narrowing are generally not recommended for rural arterial roadways.	 Yes; Short/Medium term solution Short-term: roadway would need to be re- classified as a local collector Speed cushions implemented. Medium-term: Lane Narrowing
2.D Traffic Deflection at Countryside Drive/ one-way operation with separated bike lanes	Roadway would be closed to general traffic going south from Countryside Drive; would still allow local traffic and general traffic existing northbound. Change Heart Lake Road to one-way operation going northbound between Sandalwood Parkway and Countryside Drive	This alternative does not satisfy the study purpose in that it doesn't reduce traffic speed along the corridor. This alternative will effectively increase traffic volume on certain portions of the roadway and would have minimal impacts on travel speed, despite a potential reaction in the speed limit to 50 km/h.	• No

 Table 22:
 Assessment of Traffic Calming Alternatives

Alternative	Description of Alternative	Results of Screening Evaluation	Alternative Carried Forward?
2.E Roundabout at Countryside Option 1	Convert the existing non- signalized intersection at Countryside Drive to a roundabout. Extends into the existing TRCA lands on the west portion of the intersection.	This alternative satisfies the study purpose in that it will reduce traffic speed along the corridor and dissuade trucks of using Heart Lake Road, without preventing them from maneuvering if required. However, TRCA lands will be impacted. As a result, this alternative is considered non-acceptable.	• No
2.F Roundabout at Countryside Option 2	Convert the existing non- signalized intersection at Countryside Drive to a roundabout. Does not impact TRCA lands.	This alternative satisfies the study purpose in that it will reduce traffic speed along the corridor and dissuade trucks of using Heart Lake Road, without preventing them from maneuvering if required. There are some property implications on the east side of Heart Lake Road and relocation of concrete electric poles This alternative does not impact TRCA lands and can be considered.	Yes; long term solution

 Table 22:
 Assessment of Traffic Calming Alternatives

Evaluation of Alternatives November 2019

Alternative	Description of Alternative	Results of Screening Evaluation	Alternative Carried Forward?
3.A Do Nothing	Continue with the existing wildlife mortality mitigation measures (including solar powered flashing amber lights, optical speed bars, eco- passage tunnels, wildlife directional fencing, and turtle nesting mounts) that have been implemented with little post-mitigation monitoring	This alternative does continue to implement wildlife mortality mitigation measures however their effectiveness is yet to be determined	• No
3.B Maintain Solar Powered Flashing Amber Lights	This alternative involves a solar operating flashing "seasonal wildlife crossing- reduce speed when flashing" signage	This alternative provides notification to drivers to reduce their speed due to the presence of wildlife crossing Heart Lake Road. Its effectiveness is yet to be determined. This option (alone) will continue to result in conflicts between wildlife and vehicles.	Yes; short term solution
3.C Maintain Pavement Markings (optical speed bars)	Painted lines on the roadway meant to reduce the average speed of vehicles along Heart Lake Road.	This alternative has been implemented however its effectiveness in decreasing speed along Heart Lake Road is yet to be determined. This option (alone) will continue to result in conflicts between wildlife and vehicles.	Yes; short term solution
3.D Additional Eco- Passage Tunnel(s)	Eco-passage tunnel or wildlife crossing are designed to provide a safe means for amphibians or reptiles to cross Heart Lake Road therefore avoiding traffic.	This alternative has been implemented adjacent to one of the identified wildlife fatality areas. Long term solution would include implementing additional eco- passage tunnels in adjacent identified hot spot locations.	Yes; short term solution
3.E Wildlife Directional Fencing	Designed to provide a barrier from turtles from crossing the road.	This alternative assists with preventing wildlife from accessing the roadway and directs them to the existing eco-passage tunnel.	Yes; short term solution
3.F Turtle Nesting Mounts	Man-made mound designed to create an alternative away from the road for both females and hatchlings.	This alternative assists with providing a safe area for females and hatchlings to nest. There are minor impacts to vegetation during the construction of the nesting mound.	Yes; short term solution

Table 23: Assessment of Wildlife Treatment Alternatives

6.3.3 Results of Screening

As noted in **Table 21**, **Table 22** and **Table 23**, the preliminary screening exercise identified several alternatives that warrant further/more detailed evaluation.

6.4 EVALUATION CRITERIA

Evaluation criteria have been developed based on existing conditions and background data, meetings with City officials and the TRCA. The evaluation criteria are independent variables, each of which may contribute a positive or negative influence on the overall suitability of an alternative.

Evaluation of Alternatives November 2019

The evaluation criteria for the assessment of transportation alternatives consist of three main categories:

- Multi-modal Transportation;
- Social and Cultural Environment;
- Natural Environment.

Within each of these three main categories, a number of criteria and factors were in the evaluation of transportation alternative options, as detailed in **Table 24**.

Category	Criteria	Factors Considered
	Roadway geometrics	Satisfies desirable design criteria
	Access	Proximity to Community Facilities
Multi-modal	Traffic engineering	Impacts to Traffic Operations
transportation	Speed	Reduce Speed km/hr
	Cycling	Attract cyclists to promote bicycle connectivity
	Safety	Improve safety for all road users
	Built cultural heritage features	Preserve Cultural Heritage Features
Social and Cultural	Agricultural resources	Minimize impacts to agricultural lands
Environment	Land use	Minimize impacts to existing residential/recreational properties
	Economic environment	Accommodate planned development and growth
	Designated natural areas	Minimize Impacts to Designated Natural Areas
Natural Environment	Wildlife and terrestrial habitat	Minimize impacts to wildlife
	vegetation	Minimize impacts to vegetation
	Surface water and drainage	Minimize Impacts to Surface Water and Ground Water

Table 24: Evaluation Criteria and Factors Considered

6.5 EVALUATION MATRIX

 Table 24, Table 25 and Table 26 present the detailed evaluation of alternatives. Each alternative was evaluated based on the following preference factors:

- * Most preferred
- ✓ Moderately preferred
- Least preferred
- × Fail

Evaluation of Alternatives November 2019

Table 25: Evaluation of Transportation Alternatives

~					Transportation Alternatives			
Category Category	Factors	1.A Do Nothing	1.B Two Lanes with Paved Shoulders and Rumble Strips	1.C Two Lanes with Separated Bike Lanes	1.D Two Lanes with Separated Bi- directional Multi-Use Path on one side	1.E Narrow Roadway with Shared Roadway Markings and Signs	1.F Hybrid Multi-Use Trail in Heart Lake Conservation Area	1.G One-way operation with Separated Bike Lanes
Roadway Geometry	Satisfies Desirable Design Criteria	 The existing vehicular lane widths of ~3.5m make the roadway more comfortable for cars and promote faster speeds 	 Would require the vehicular lane to be narrowed to 3.3m and the addition of a painted 0.5m rumble strip buffer and 1.5m paved shoulder for cycling with and another 0.5m of unpaved shoulder. The existing un- paved shoulder would have to be partially paved. A 0.5m painted buffer would be required. 	 Would require the vehicular lane to be narrowed to 3.3m and the addition of a 0.5m buffer with flexible bollards and 1.5m paved dedicated bicycle lane and another 0.5m of unpaved shoulder. The existing un- paved shoulder would have to be partially paved and flexible bollards would have to be installed. A 0.5m painted buffer would be required. 	Would require the vehicular lane to be narrowed to 3.3m and a 3.0m bi- directional multi-use facility would be placed on either the east or west side of the roadway with a 0.5m shoulder buffer. This would require the vehicular lanes to be shifted to the east or west side. A controlled crossing is required at Countryside Drive and future access to residential development.	Would require the vehicular lane to be narrowed to 3.3m and the overall paved width of the roadway gets narrowed with traffic calming measures along the roadway including speed cushions and mini roundabouts. The rationale is to make the roadway feel less like a high-speed route and more like a slower local route.	* Would require appropriate multi-use trail connections between existing boulevard paths along Countryside Drive and Sandalwood Parkway to connect to the existing internal trail within the Heart Lake Conservation Area. Pedestrians would also be accommodated on the multi-use trail. Refurbishment of the existing trail/old access road entrance opposite Countryside Drive is required.	 Change Heart Lake Road to one- way operation going northbound between Sandalwood Parkway and Countryside Drive. This alternative will increase the travel distance from Heart Lake Road (north) to the Conservation Area by 1.8km, and from the Conservation Area to Heart Lake Road (south) by 4.0km.
Access	Proximity to Community Facilities	 Existing vehicular access to facilities maintained. Currently requires cyclists to share the roadway (ride with traffic) along Heart Lake Road which provides a direct access to the main Heart Lake Conservation Area Entrance and other properties along the corridor. 	 Existing vehicular access to facilities maintained. Would provide direct access to the main Heart Lake Conservation Area entrance off of Heart Lake Road. A cyclist will have to ride with traffic along Heart Lake Road to access the Conservation Area entrance. 	 Existing vehicular access to facilities maintained. Would provide direct access to the main Heart Lake Conservation Area entrance off of Heart Lake Road. A cyclist will have to ride with traffic along Heart Lake Road to access the Conservation Area entrance. 	 Existing vehicular access to facilities maintained. Would provide a direct access into the Heart Lake Conservation Area and reduce conflict points for active transportation road users if the multiuse facility were to be placed on the west side of the roadway. 	 Existing vehicular access to facilities maintained. Would provide direct access to the main Heart Lake Conservation Area entrance off of Heart Lake Road and would require cyclists exiting towards the north and entering from south to cross one vehicular lane of traffic. 	 Would provide a direct access into the Heart Lake Conservation Area and reduce conflict points via protected crossings for entering and exiting. Does not provide continual/direct access to all destinations along Heart Lake Road. Trail could also accommodate pedestrians 	 Vehicular access to destinations along Heart Lake Road will be limited to access from the south.
≥ Traffic	Impacts to Traffic Operations	 Maintain existing operations. Does not promote cycling or walking, does not conform with the municipal transportation master plan vision. 	 Little to no impacts on traffic operations. 	 Little to no impacts on traffic operations. 	 Little to no impacts on traffic operations. 	 May generate minor impacts on adjacent corridors by making the corridor less appealing for through vehicles. 	 Little to no impacts on traffic operations. Conforms to municipal transportation master plan vision. 	 Significant impacts to traffic operations, would require extra travel distance for vehicles to travel southbound from within the corridor. Would also generate impacts on adjacent corridors.
Speed	Reduce Speed	 The roadway will maintain poor speed compliance with the existing compliance rate at 11%, indicating that only 11% of drivers travel at or below the posted speed limit. Heart Lake Road also includes advisory and warning signage which is meant to raise awareness/identify the wildlife crossing potential hazard. 	The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for 3.3m vehicular lane widths. The rumble strip buffer will further reinforce narrow roadway cues even if visually, the corridor looks wide and rural.	The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for 3.3m vehicular lane widths. The physical flexible bollards will create a visual wall to make the roadway look more urban and less rural to promote slower speeds.		✓ The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for 3.3m vehicular lane widths. The add. of traffic calming measures such as speed cushions and mini roundabouts are effective ways to reduce vehicular speed, volume and increase safety along roadways.	 The roadway will remain mostly unchanged beyond intersection improvements at Heart Lake Road and Countryside Drive that will have minor positive impacts on traffic speed. 	 Increase in volume is forecasted on Countryside Drive eastbound due to forced right turns northbound at the intersection of Heart Lake Road and Countryside Drive. It also increases overall trip lengths for vehicles as it forces all vehicles to go northbound. The option may increase speeding.

Evaluation of Alternatives November 2019

Table 26: Evaluation of Transportation Alternatives

~					Transportation Alternatives			
Criteria Criteria	Factors	1.A Do Nothing	1.B Two Lanes with Paved Shoulders and Rumble Strips	1.C Two Lanes with Separated Bike Lanes	1.D Two Lanes with Separated Bi- directional Multi-Use Path on one side	1.E Narrow Roadway with Shared Roadway Markings and Signs	1.F Hybrid Multi-Use Trail in Heart Lake Conservation Area	1.G One-way operation with Separated Bike Lanes
Cycling	Attract Cyclists and Promote Bicycle Connectivity	 Currently no cycling infrastructure is in place. 	 The signed route will connect with future and existing boulevard paths on Countryside Drive and Sandalwood Parkway. This facility type has a low attractiveness for cyclists. 	 The separated bicycle lane will connect with existing boulevard paths on Countryside Drive and Sandalwood Parkway. This facility type has a high attractiveness for cyclists. 	 The separated bi-directional multi- use trail will connect with existing boulevard paths on Countryside Drive and Sandalwood Parkway. This facility type has a high attractiveness for cyclists. 	✓ The shared route will connect with existing boulevard paths on Countryside Drive and Sandalwood Parkway. This facility type will be attractive to cyclists based on the effectiveness of traffic calming measures.	 Direct internal connections to Heart Lake Conservation Area will be made to the existing boulevard paths on Countryside Drive and Sandalwood Parkway. A new section of the recreational trail through the Conservation Area lands will complete a gap in the Esker Lake Recreational Trail. 	Drive and Sandalwood Parkway. This facility type has a high attractiveness for cyclists.
Safety	Improve Safety for All Road Users	 The roadway will remain unchanged. Speed compliance will remain low and there are no traffic calming measures to help reduce the severity of collisions with vehicles or cyclists beyond the existing speed optical bars. 	✓ The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for the narrowed lanes. The lower speed limit will work towards reducing the severity of collisions and the paved shoulders will reduce conflicts between cyclists and vehicles.	✓ The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for the narrowed lanes. The dedicated bicycle lanes with flexible bollards will significantly reduce conflicts between cyclists and vehicles by providing physical and visual cues separating the two modes.	✓ The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for the narrowed lanes. The separated bi-directional multi-use path will significantly reduce conflicts between cyclists and vehicles by providing complete separation between the two modes.	✓ The operating speeds will be reduced to 50km/h to adhere to appropriate design speed standards for narrowed lanes. Traffic calming measures such as speed cushions and mini roundabouts will further reinforce reduced vehicular speeds. There is no dedicated space for cyclists on the roadway and existing conflicts will still remain.	and Countryside Drive that will have minor positive impacts on traffic speed and collisions.	 One-way operation would allow cyclists to use the southbound lane for travel along the corridor, separated from traffic which would enhance cyclist safety greatly.
Built Cultural Heritage Resources and Landscapes	Preserve Cultural Heritage Features d	 Natural characteristics adjacent to the roadway remain intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural characteristics adjacent to the roadway remain intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural characteristics adjacent to the roadway remain intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural characteristics adjacent to the roadway remain intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural characteristics adjacent to the roadway remain intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural characteristics adjacent to the roadway remain intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural characteristics adjacent to the roadway remain intact, comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands
Agricultural Resources	Minimize Impacts to Agricultural Lands	 No impacts to agricultural lands located north of Countryside Road/east side of Heart Lake Road 	 No impacts to agricultural lands located north of Countryside Road/east side of Heart Lake Rd 	 No impacts to agricultural lands located north of Countryside Road/east side of Heart Lake Rd 	 No impacts to agricultural lands located north of Countryside Road/east side of Heart Lake Rd 	 No impacts to agricultural lands located north of Countryside Road/east side of Heart Lake Rd 	 No impacts to agricultural lands located north of Countryside Road/east side of Heart Lake Rd 	 No impacts to agricultural lands located north of Countryside Road/east of Heart Lake Rd
Resources Land Onlineal Environment Land Use Land Use	Minimize Impacts to Existing Residential/ Recreational Properties	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	Development north of Lakeside Garden Centre	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre Enhanced connections to existing recreational facilities at Heart Lake Conservation Area 	 Significant impacts to existing facilities. Would require vehicles leaving the properties along the roadway to travel further to go south Would increase the distance vehicles accessing the corridor would have to travel.
Economic Environment	Accommodate Planned Development and Growth	✓ No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 Would require vehicles leaving the properties along Heart Lake Road to travel much further to go southbound. Would increase the distance vehicles accessing the corridor would have to travel.

Evaluation of Alternatives November 2019

Table 27: Evaluation of Transportation Alternatives

У						Transportation Alternatives			
Category	Criteria	Factors	1.A Do Nothing	1.B Two Lanes with Paved Shoulders and Rumble Strips	1.C Two Lanes with Separated Bike Lanes	1.D Two Lanes with Separated Bi- directional Multi-Use Path on one side	1.E Narrow Roadway with Shared Roadway Markings and Signs	1.F Hybrid Multi-Use Trail in Heart Lake Conservation Area	1.G One-way operation with Separated Bike Lanes
	Designated Natural Areas	Minimize Impacts to Designated Natural Areas	* No impacts.	 Work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas 	 Work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas 	 Work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas 	 Work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas 	 Minor impacts to vegetated areas inside Heart Lake Conservation Area. 	 Work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas
ment	Wildlife and Terrestrial Habitat	Minimize Impacts to Wildlife	* No impacts.	 Paved shoulders may deter turtle nesting sites that exist along gravel shoulders 	 Paved shoulders may deter turtle nesting sites that exist along gravel shoulders 	 Paved shoulder surface may deter turtle nesting sites that exist along gravel shoulders 	 Continue to implement the wildlife signs, concrete box culvert (eco- passage), fencing, and artificial turtle nesting mounds 	 Refurbishment to the existing trail/old access road entrance may remove some existing habitat within Heart Lake Conservation Area 	 No impacts.
tural Enviror	Vegetation	Minimize Impacts to Vegetation	 No impacts to vegetation; no change to Right of Way 	 No impacts to vegetation; no change- to Right of Way 	 No impacts to vegetation; no change to Right of Way 	 No impacts to vegetation; no change to Right of Way 	 No impacts to vegetation; no change to Right of Way 	 Removal of old growth vegetation within the existing trail/old access road entrance 	 No impacts to vegetation; no change to Right of Way
2N	Surface Water and Drainage	Minimize Impacts to Surface Water and Ground Water	 Salt and/or sand from road winter operations can cause changes in the water quality to neighbouring wetlands and potentially impact surface and groundwater No change to paved portion of shoulder 	 Salt and/or sand from road winter operations can cause changes in the water quality to neighbouring wetlands Paving a portion of the shoulder would create greater impervious cover 	 Salt and/or sand from road winter operations can cause changes in the water quality to neighbouring wetlands Paving a portion of the shoulder would create greater impervious cover 	 Salt and/or sand from road winter operations can cause changes in the water quality to neighbouring wetlands Paving a portion of the shoulder would create greater impervious cover 	 Salt and/or sand from road winter operations can cause changes in the water quality to neighbouring wetlands No pavement increase to existing shoulder 	 No salt or fluids originating from vehicles and salt distributing vehicles affect the existing trail/old access road entrance 	 Salt and/or sand from road winter operations can cause changes in the water quality to neighbouring wetlands No pavement increase to existing shoulder
	 Most Preferr 	red	* 7	* 6	* 8	* 7	* 7	* 10	* 6
Scoring	✓ Moderately I	Preferred	√ 3	✓ 7	√ 6	✓ 8	√ 9	✓ 4	✓ 2
Sco	 Least Prefer 	rred	- 5	- 4	- 3	- 2	- 1	- 3	- 3
	× Fail		× 2	× 0	× 0	× 0	× 0	× 0	× 6

Evaluation of Alternatives November 2019

Table 28: Evaluation of Traffic Calming Alternatives

					Traffic Calmin	g Alternatives		
Category	Criteria	Factors	2.A Do Nothing	2.B Stop Control or Mini Roundabouts at Intersections (Heart Lake Conservation Area/New Residential Development)	2.C Speed Cushions Lane Narrowing with Rumble Strips	2.D Traffic Deflection at Countryside Drive One-way operation with Separated Bike Lanes	2.E Roundabout at Countryside Option 1	2.F Roundabout at Countryside Option 2
sportation	,	Satisfies Desirable Design Criteria	 The existing vehicular lane widths of 3.5m make the roadway more comfortable for cars and promote faster speeds. 	✓ Added stop signs or traffic circle to the Heart Lake Road and Conservation Area Entrance. Traffic circles consist of a raised island located in the centre of an intersection which requires vehicles to travel through the intersection and around the island. Traffic speed would have to be reduced to 50km/h and the roadway would have to be re- classified as either a collector or local roadway.	 Speed cushions are raised sections of the roadway designed to discourage motor vehicle drivers from travelling at excessive speeds. These are an acceptable measure for roadways with low volumes To implement this measure on Heart Lake Road, the traffic speed would have to be reduced to 50km/h and the roadway would have to be re-classified as either a collector or local roadway. Vehicular lane would be narrowed to 3.3m along with rumble strips to give physical and auditory cues to drivers that they should not use the wider shoulder. This would require a reduction in the speed limit as lane widths of 3m are recommended for roadways that operate at vehicular speeds of 50km/h or less. 	 Roadway would be closed to general traffic going south from Countryside Drive but would still allow local traffic and general traffic exiting northbound. Change Heart Lake Road to one-way operation going northbound between Sandalwood Parkway and Countryside Drive. 	 Convert the existing non- signalized intersection at Countryside Drive to a roundabout. This would replace the existing free movement northbound and southbound approaches with yielding approaches going around a raised island. This option is less complex and extends onto the existing TRCA lands on the west portion of the intersection. 	✓ Convert the existing non- signalized intersection at Countryside Drive to a roundabout. This would replace the existing free movement northbound and southbound approaches with yielding approaches going around a raised island. This option involves more complexity without impacting the TRCA lands but requires the relocation of hydro lines on the east side of the intersection.
Multi-Modal Trar	Traffic Calming	Reduce Speed	 The roadway will maintain poor speed compliance with the existing compliance rate at 11% and 85th percentile speeds at 80km/h despite the posted speed limit of 60km/h. 	The speed limit will be reduced to 50km/h to adhere to appropriate design speed standards for mini roundabouts. Traffic circles are effective at promoting speed reduction and reducing vehicular volume.	 The speed limit will be reduced to 50km/h to adhere to appropriate design speed standards for speed cushions. Speed cushions are highly effective at reducing speed and reducing vehicular volume. Case studies have found a relationship between narrower road widths and slower vehicular speeds, although a narrow roadway is not the only determining factor and their effectiveness depend on other factors including roadway curvature, roadside development, type of traffic control, among others. The rumble strip buffer will further reinforce narrow roadway cues even if visually, the corridor looks wide and rural. 	 This may initially reduce traffic volume, however, deflecting traffic away from the corridor will not help reduce traffic speed along the corridor and may even promote higher speeds as there are few obstacles and vehicular interactions along the roadway. It would effectively increase volume on certain portions of the roadway and would have minimal impacts on travel speed, despite a potential reduction in the speed limit to 50km/h. It may also increase overall trip length for vehicles as it forces all vehicles to go northbound with the nearest southbound route located far away east of Highway 410. 	The roundabout will physically require all vehicles to reduce their speed in order to pass around the raised island. This is highly effective compared to the existing north-south movements that are unimpeded and free- flowing.	The roundabout will physically require all vehicles to reduce their speed in order to pass around the raised island. This is highly effective compared to the existing north-south movements that are unimpeded and free- flowing.
	5	Improve Safety for all Road Users	 Currently no cycling infrastructure is in place. 	 A reduced speed limit and addition of a traffic circle will reduce speeds along the roadway and improve cyclist comfort. 	 A reduced speed limit and addition of speed cushions will reduce speeds along the roadway and improve cyclist comfort. A narrower roadway will have some effect toward encouraging slower speeds with some minor improvement to cyclist comfort. 	 Lower traffic volumes will improve cyclist comfort somewhat, but there would be little improvement to traffic speed. One-way operation would allow cyclists to use the southbound lane for travel along the corridor, separated from traffic which would enhance cyclist safety greatly. 	 Slower vehicular operation through the Countryside Drive intersection along with a more direct line-of-sight for cyclists will greatly enhance safety. 	 Slower vehicular operation through the Countryside Drive intersection along with a more direct line-of-sight for cyclists will greatly enhance safety.

Evaluation of Alternatives November 2019

Table 29: Evaluation of Traffic Calming Alternatives

					Traffic Calmi	ng Alternatives		
Category	Criteria	Factors	2.A Do Nothing	2.B Stop Control or Mini Roundabouts at Intersections (Heart Lake Conservation Area/New Residential Development)	2.C Speed Cushions Lane Narrowing with Rumble Strips	2.D Traffic Deflection at Countryside Drive One-way operation with Separated Bike Lanes	2.E Roundabout at Countryside Option 1	2.F Roundabout at Countryside Option 2
He Re		Preserve Cultural Heritage Features	 Natural character of the roadway remains intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural character of the roadway remains intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural character of the roadway remains intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Natural character of the roadway remains intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands 	 Requires vegetation adjacent to roadway to be removed to accommodate roundabout design Encroaches on the TRCA lands 	 Natural characteristics adjacent to the roadway remains intact; comprised of varied topography, wetlands, treed ridges, forested areas, and rolling agricultural lands
Social and Cultural		Minimize Impacts to Existing Residential/ Recreational Properties	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre Would enhance access to the recreational facilities at Heart Lake Conservation Area by slowing traffic down at the access 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	 Significant impacts to planned residential developments, and existing commercial and recreational facilities. Would prevent access to site along the roadway from the north. One-way operation with separated bike lanes would result in large impacts to planned residential developments, and existing commercial and recreational facilities. Would require vehicles leaving the properties along the roadway to travel much further to go southbound. 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area 	 No impacts to residential developments planned in the Metrus Development north of Lakeside Garden Centre No impact to recreational facilities at Heart Lake Conservation Area
	nvironment	Accommodate Planned Development and Growth	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	✓ No impact to planned industrial/employment development; Private School development; residential development within the Countryside Villages Secondary Plan area	 Significant impacts to planned residential developments, and existing commercial and recreational facilities. Would prevent access to site along the roadway from the north. Would increase the distance vehicles accessing the corridor would have to travel. One-way operation with separated bike lanes would result in large impacts to planned residential developments, and existing commercial and recreational facilities. Would require vehicles leaving the properties along the roadway to travel much further to go southbound. Would increase the distance vehicles accessing the corridor would have to travel. 	 Improved connections between the east and west sides of the roadway for planned industrial / employment development; Private School development; residential development within the Countryside Villages Secondary Plan area 	 Improved connections between the east and west sides of the roadway for planned industrial / employment development; Private School development; residential development within the Countryside Villages Secondary Plan area
nment Ma	atural Areas	Minimize Impacts to Designated Natural Areas	 No impacts to designated natural areas. 	 No impacts to designated natural areas. 	✓ No impacts to designated natural areas.	✓ No impacts to designated natural areas.	 Impacts to lands associated with the Heart Lake Conservation Area 	 Minor impact to lands in the northeast corner adjacent to the intersection of Countryside Dr and Heart Lake Rd, and remain outside of the wetland areas and TRCA lands
E Te	errestrial	Minimize Impacts to Wildlife	✓ No impacts to wildlife.	✓ No impacts to wildlife.	✓ No impacts to wildlife.	✓ No impacts to wildlife.	✓ No impacts to wildlife anticipated.	✓ No impacts to wildlife anticipated.
Ve	5	Minimize Impacts to Vegetation	 No impacts to vegetation. 	✓ No impacts to vegetation.	✓ No impacts to vegetation.	✓ No impacts to vegetation.	 Impacts to vegetation; change to Right of Way at Heart Lake Rd. 	 No impacts to vegetation; moderate change to Right of Way off Countryside Dr and Heart Lake Road.

Evaluation of Alternatives November 2019

Table 30: Evaluation of Wildlife Mortality Mitigation Alternatives

				Wildlife Mortality N	litigation Alternatives		
		3.A Do Nothing	3.B Maintain Solar Powered Flashing Amber Lights	3.C Maintain Pavement Markings (optical speed bars)	3.D Additional Eco-Passage Tunnel(s)	3.E Wildlife Directional Fencing	3.F Turtle Nesting Mounds
Criteria	Factors	CROSSING					
Designated	Minimize Impacts to Designated	 No effect to Designated Natural Areas Existing wildlife mortality mitigation measures have been recently 	× No effect to Designated Natural Areas	× No effect to Designated Natural Areas	 No effect to Designated Natural Areas Provides connection to Designated 	 No effect to Designated Natural Areas Provides protection for turtles from 	 No effect to Designated Natural Areas Provides a mitigation tool used to reduce
Natural Areas	Natural Areas	implemented and there is little post- mitigation monitoring			Natural Areas and habitat	crossing the road	mortality of nesting females and hatchlings
Terrestrial Habitat	Minimize Impacts to Wildlife	 Effectiveness of the signage has not been determined 	 Minimal impact on driver behaviour to slow down due to presence of wildlife habitat 	× No effect to minimize impacts to wildlife	 Provides off road passage of turtles/frogs/snakes between vegetated areas 	* Provides protection to turtles wishing to cross the roadway	 Proves a mitigation tool used to reduce mortality of nesting females and hatchlings
Design Factors	Minimize Impacts to Vegetation	✓ No impact to vegetation that exists along Heart Lake Road	× No effect on Vegetation	× No effect on Vegetation	 Minor impact to vegetation at the entrance and exit 	 Minor impact to vegetation along the roadway edge of pavement 	 Minor impacts to vegetation during the construction of the turtle nesting mounds

Preferred Alternative November 2019

7.0 PREFERRED ALTERNATIVE

Based on the assessment and evaluation of alternatives, a series of short term (i.e., recommended within 2 years) and long term (recommended within 5 to 10 years) solutions have been identified, as outlined below.

7.1 SHORT TERM

The short-term alternatives recommended over a 2-year horizon include the following:

- Transportation Improvements:
 - Narrow roadway including 3.3 m traffic lanes (Figure 44); and
 - Consider implementing a hybrid multi-use trail through Heart Lake Conservation Area with connections to the existing boulevard path at Heart Lake Road / countryside Drive.
- Traffic calming measures
 - Re-classify the road as a collector road;
 - Lower speed limit to 50 km/h;
 - Consider implementing solid yellow line for the full segment of Heart Lake Road south of Countryside Drive, in order to decrease speeding;
 - Implement speed cushions between Mayfield Road and the Highway 410 SB off-ramp; and
 - Install a traffic circle at the Conservation Area entrance (Figure 48).
- Wildlife mortality mitigation:
 - Maintain existing solar powered flashing amber lights;
 - Maintain and re-paint optical speed bars;
 - Install additional eco-passages tunnels at the two "hotspots" where passages are not already installed (Figure 23);
 - Permanently install wildlife directional fencing; and
 - Implement turtle nesting mounds.

7.2 LONG TERM

As noted, the long-term solutions are recommended for implementation within 5 to 10 years, as development occurs and needs increase. It should be noted that these recommendations are preliminary in nature and may be further reviewed and evaluated as part of future Municipal Class Environmental Assessment activities.

- Install a roundabout at the intersection of Countryside Drive (Option 2) (Figure 50); and
- Implement Alternative 1.C with separated bike lanes on Heart Lake Road (Figure 42).

7.3 ECO-PASSAGES

Figure 52 shows the proposed locations of two new eco-passages and the related longitudinal profile of Heart Lake Road.

Based on information provided from the geotechnical investigations on the corridor (please refer to **Appendix F**), it is concluded that eco-passages with concrete boxes $1.8 \times 1.5 \text{ m}^2$ (similar to the existing eco-passage south of

Preferred Alternative November 2019

Countryside Drive) are feasible but would require special measures to ensure a satisfactory lifespan. As a result, the use of StormTech chambers (**Figure 51**) is recommended.

As noted in Section 3.5, two boreholes were advanced north of the Heart Lake Conservation Area Access, each of which encountered a peat layer at varying depths and thickness. For alternatives with concrete box culverts, the peat layers identified at these locations would have to be removed and replaced with class B controlled backfill. This would require an excavation starting from the south side at a depth of 4.4 m to a depth of 3 m to the north side. Despite this not being mandatory with the StormTech chambers, the peat layer removal is recommended.

The concrete box culverts would slightly increase the existing load of the road on the underlying soils below, while the solution with the StormTech chambers substantially decreases it. It is unclear how the existing eco-passage was constructed; however, boreholes advanced in this area suggest that there was a peat layer beneath that was removed to accommodate the construction of the culvert.

Figure 53 shows the cross sections of the two new eco-passages proposed using the StormTech Chambers.

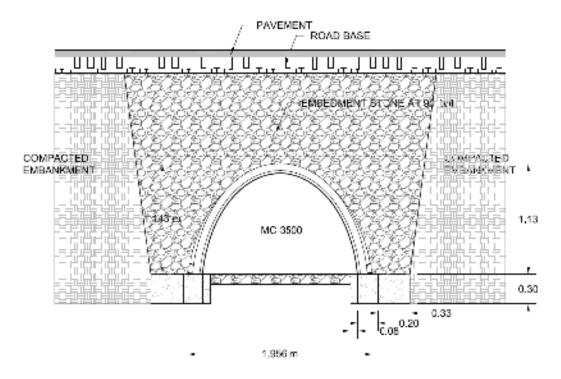


Figure 51: StormTech Chambers

Preferred Alternative November 2019

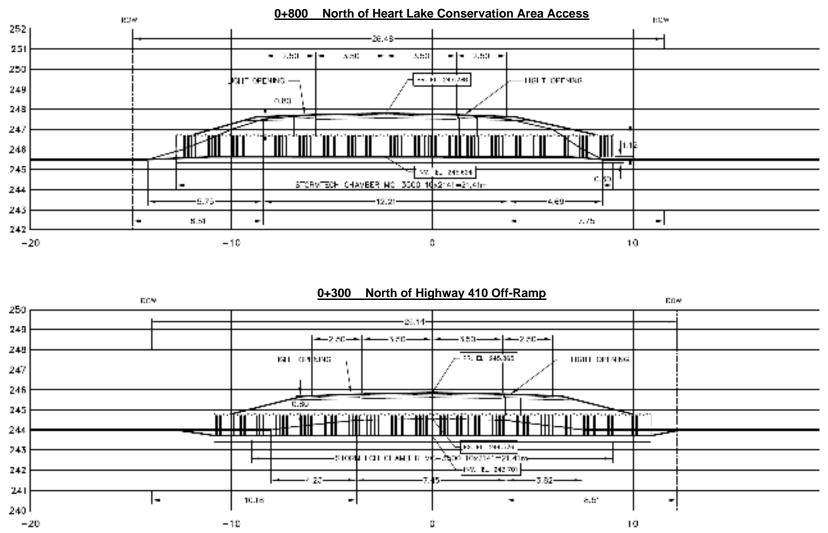
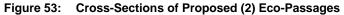




Figure 52: Heart Lake Road | Proposed Longitudinal Profile

Preferred Alternative November 2019

Preferred Alternative November 2019

7.4 BUDGETARY COST ESTIMATES

Appendix H provides the details associated to cost estimates, while the following sections summarize the costs per planning horizons with a 30% contingency.

7.4.1 Short Term

In the short term, the total cost for the recommended alternatives is approximately \$ 1,425,000, which may be divided as follow:

•	Traffic lane narrowing with rumble strips, between Sandalwood and Mayfield:	\$ 20,000
٠	The mini roundabout at the intersection with the Conservation Area access:	\$ 525,000
٠	The eco-passage at station 0+300 (north of Highway off-ramp):	\$ 280,000
•	The eco-passage at station 0+800 (north of Heart Lake Conservation Area):	\$ 75,000
•	Recreation rail connections through Heart Lake Conservation Area	\$ 525,000

The costs for the mini-roundabout include cost for lighting, while costs for the eco-passage include cost of fencing. The recreational trail connections include costs for planning, detailed design and construction.

7.4.2 Long Term

In the long term, the total cost for the recommended alternatives is approximately \$ 1,750,000, which may be divided as follow:

•	The roundabout at the intersection with Countryside Drive:	\$ 520,000
•	Separated bicycle lanes between Sandalwood and Mayfield:	\$ 1,230,000

The costs for the roundabout include cost for lighting and relocation of concrete electric poles.

Conclusion November 2019

8.0 CONCLUSION

In response to concerns regarding wildlife mortality and traffic operations, the City of Brampton commissioned Stantec to undertake a function and design review of the Heart Lake Road corridor within the City of Brampton.

The focus of this study is the Heart Lake Road corridor between Sandalwood Parkway to a point just north of Mayfield Road, however, the assessment of the transportation network and recommendations from this study extend beyond this focus area.

The followings summarize the transportation issues and challenges noted on the Heart Lake Road corridor:

- Daily traffic on Heart Lake Road, between Countryside Drive and the Highway 410 off-ramp, is currently around 7,000 vehicles per day (i.e., 4,000 southbound and 3,000 northbound);
- The existing and forecasted traffic volumes do not justify widening of Heart Lake Road (additional traffic lanes), given that the theoretical capacity per lane for a typical two-lane rural roadway is 800 veh/h;
- Vehicles travelling on Heart Lake Road currently exceed the speed limit, which reduces safety on the corridor, given that higher speeds increase the probability and severity of collisions;
- Heart Lake Road is identified as a candidate for bicycle lane in the City of Brampton Transportation Master Plan;
- Improvements are required at the intersection with Sandalwood Parkway to improve safety conditions (see Table 14);
- Heavy trucks are observed on Heart Lake Road despite being prohibited; and
- Road infrastructure conditions constrain the type of measures that can be put in place along the corridor.

The study area section of Heart Lake Road is situated within one of the largest and most diverse natural areas within the City of Brampton. HLCA is located on the west side of the road and comprises a diverse, 169-hectare ecosystem having one of the largest blocks of forest in the Etobicoke Creek watershed, and contains six provincially rare vegetation community types, Provincially Significant Wetlands (PSWs), the remaining portions of Brampton Buried Esker, Environmentally Significant Woodland area and a bog designated as an Area of Natural and Scientific Interest. The section of Heart Lake Road, between Sandalwood Parkway and Countryside Drive, is known as a "hotspot" for wildlife mortality. Through the implementation of various mitigation measures such as traffic calming measures, wildlife signage, and wildlife fencing, the mortality rate of the wildlife is expected to decrease. Implementation of two new eco-passages will help to mitigate WVC occurrences and associated wildlife mortality Heart Lake Road.

Heart Lake Road was originally a corduroy road constructed between the late 1820s to the mid-19th century. Between Sandalwood Parkway and Mayfield Road, the roadway is important in maintaining and supporting the character of the surrounding landscape. Although improved and updated, Heart Lake Road still maintains its rural road cross section with two lanes of traffic, gravel shoulders, and ditches. In 2014, the Brampton Heritage Board received a delegation from the public seeking the possible recognition of Heart Lake Road as a cultural heritage landscape. This recognition was not defined at the time; however, it was evaluated as part of this study. The criteria for determining Cultural Heritage Value or Interest (CHVI) are defined by *Ontario Regulation 9/06* (O. Reg. 9/06) (Government of Ontario 2006b). If a property meets one or more of the prescribed criteria than it merits designation under Part IV of the *Ontario Heritage Act*. Heart Lake Road, between Sandalwood Parkway and Mayfield Road met five criteria (2.i, 2.ii, 3.ii, 3.ii, and 3.iii) of O. Reg. 9/06. Therefore, Heart Lake Road has CHVI for historical/associative and contextual reasons and may be considered for designation by the City of Brampton under Part IV of the *Ontario Heritage Act*.

Conclusion November 1, 2019

it is recommended that Heart Lake Road, between Mayfield Road and Bovaird Drive be classified as a collector road. An amendment should be made to Schedule B of the Official Plan to identify this recommended roadway classification.

As noted in Section 6.0, three categories of alternative solutions were screened and evaluated, including: Active Transportation; Traffic Calming; and, Wildlife Mortality Mitigation. An evaluation process was carried out to determine potential feasible alternatives that could be carried forward for more detailed evaluation. The evaluation was based on a comparative evaluation of each alternative considering multi-modal transportation, social and cultural environment, and natural environment criteria. Meetings with City officials, TAC and TRCA were also held to help to inform the evaluation. The evaluation was completed at a high level, using a reasoned argument approach. All alternatives were presented at a Public Information Centre for review and comment. Comments received during the course of this study were reviewed and considered by the project team, and assisted in identifying the short-term and long-term recommendations.

Following the evaluation process, the short-term alternatives recommended over a 2-year horizon include the following:

- Wildlife mortality mitigation:
 - Maintain existing solar powered flashing amber lights;
 - Maintain and re-paint optical speed bars;
 - Install (2) additional eco-passages tunnels at the two "hotspots" where passages are not already installed;
 - Permanently install wildlife directional fencing; and
 - Implement turtle nesting mounds.
- Traffic calming measures
 - Re-classify the road as a collector road;
 - Lower speed limit to 50 km/h;
 - Implement speed cushions between Mayfield Road and the Highway 401 SB off-ramp; and
 - Install a traffic circle at the Conservation Area entrance.
- Transportation Improvements:
 - Narrow roadway to include 3.3 m traffic lanes; and
 - Consider implementing a hybrid multi-use trail through Heart Lake Conservation Area with connections to the existing boulevard path at Heart Lake Road / countryside Drive.

The long-term alternatives recommended in the next 5 to 10 years, as development occurs and needs increase, include further study of the following:

- Install a roundabout at the intersection of Countryside Drive; and
- Implement alternative C with separated bike lanes on Heart Lake Road.

These recommended alternatives may be subject to further study under the Municipal Class Environmental Assessment planning and design process, which is approved under the Environmental Assessment Act. The TRCA will continue to be consulted as part of future planning and design activities.

Appendix A Public Consultation November 1, 2019

APPENDIX A

Public Consultation

Appendix B Agency COrrespondence November 1, 2019

APPENDIX B

Agency Correspondence

Appendix C Turning Movement Counts November 1, 2019

APPENDIX C

Turning Movement Counts

Appendix D Synchro Reports November 1, 2019

APPENDIX D Synchro Reports

Appendix E Sandalwood Intersection/Safety Review November 1, 2019

APPENDIX E

Sandalwood Intersection/Safety Review

Appendix F Geotechnical Reports November 1, 2019

APPENDIX F

Geotechnical Reports

Appendix G Heart Lake Road Volunteer Ecology Monitoring Project, Phases 1 and 2 November 1, 2019

APPENDIX G

Heart Lake Road Volunteer Ecology Monitoring Project, Phases 1 and 2

Appendix H Cost Estimates November 1, 2019

APPENDIX H

Cost Estimates

Appendix A Public Consultation November 1, 2019

APPENDIX A

Public Consultation

LET'S CONVECT

The City of Brampton is reviewing the function and design for Heart Lake Road between Sandalwood Parkway and Mayfield Road.

The Function and Design Review of the Heart Lake Road Corridor study will examine the road's long term role and function, and associated design requirements that address future multi-modal transportation demand, planned land use and development, protection of environment features and wildlife, and recognition of its unique cultural heritage.

Your input is important to the success of our study.

A number of public engagement and consultation activities will take place over the course of the study.

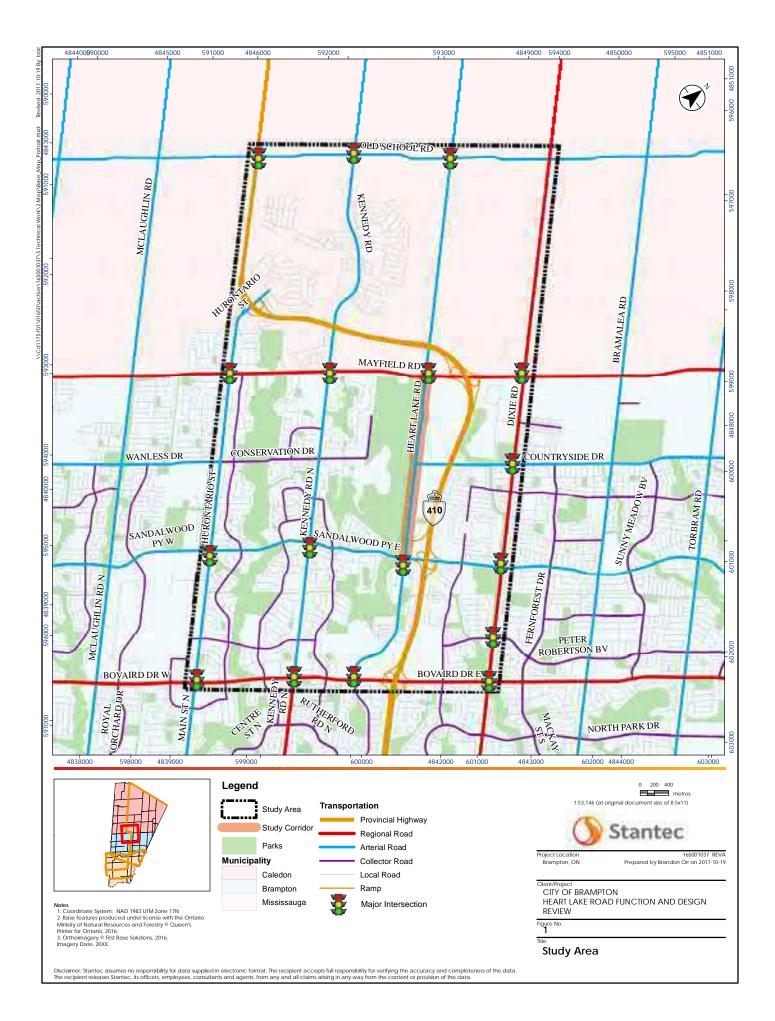
Please join us for our first event which will present the findings of the Background Review Study and a list of alternative solutions.

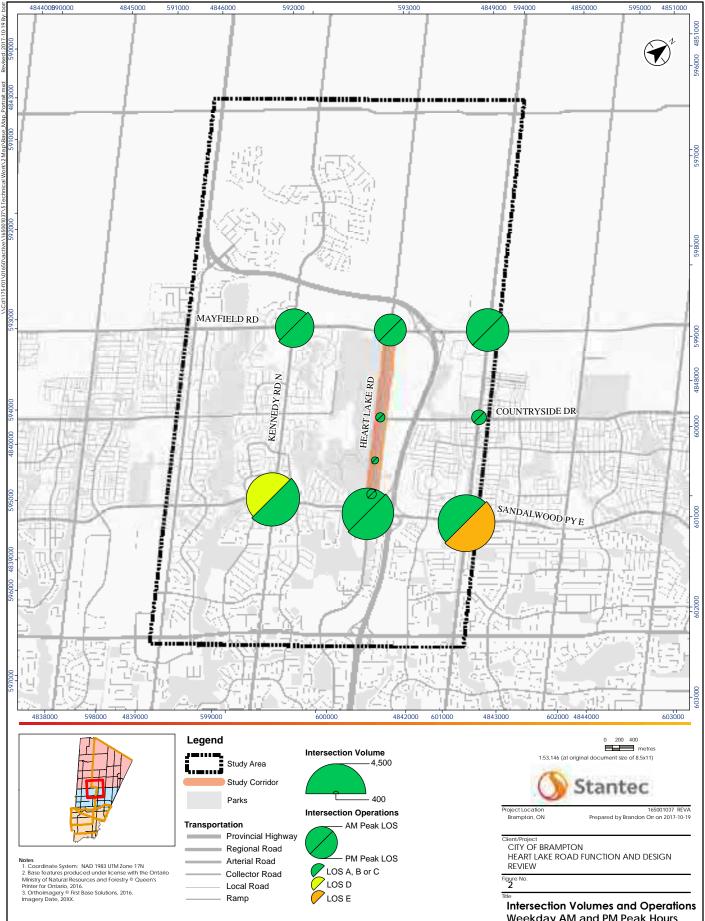
Date: Thursday, November 2, 2017 Time: 6:30 to 8:30 pm Location: Loafer's Lake Recreation Centre – Auditorium (30 Loafer's Lake Lane, Brampton)

If you have any questions or wish to be added to the study mailing list, please contact:

Nelson Cadete Project Manager, Active Transportation City of Brampton 2 Wellington Street West Brampton ON L6Y 4R2 Phone: 905.874.2552 • Fax: 905.874.2099 Email: nelson.cadete@brampton.ca

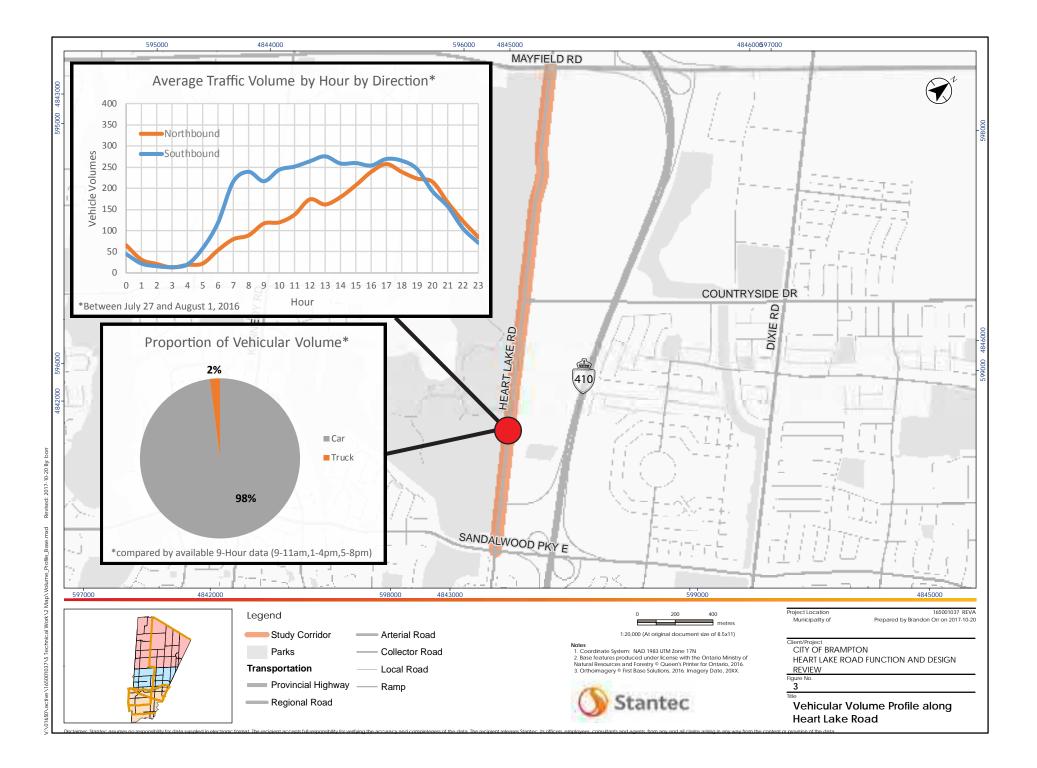
Francois Tomeo, P. Eng., GDBA Project Manager Transportation Planning & Traffic Engineering Stantec Consulting Ltd. 300-49 Bathurst Street Toronto, ON M5V 2P2 Phone: 416-598-6685 francois.tomeo@stantec.com

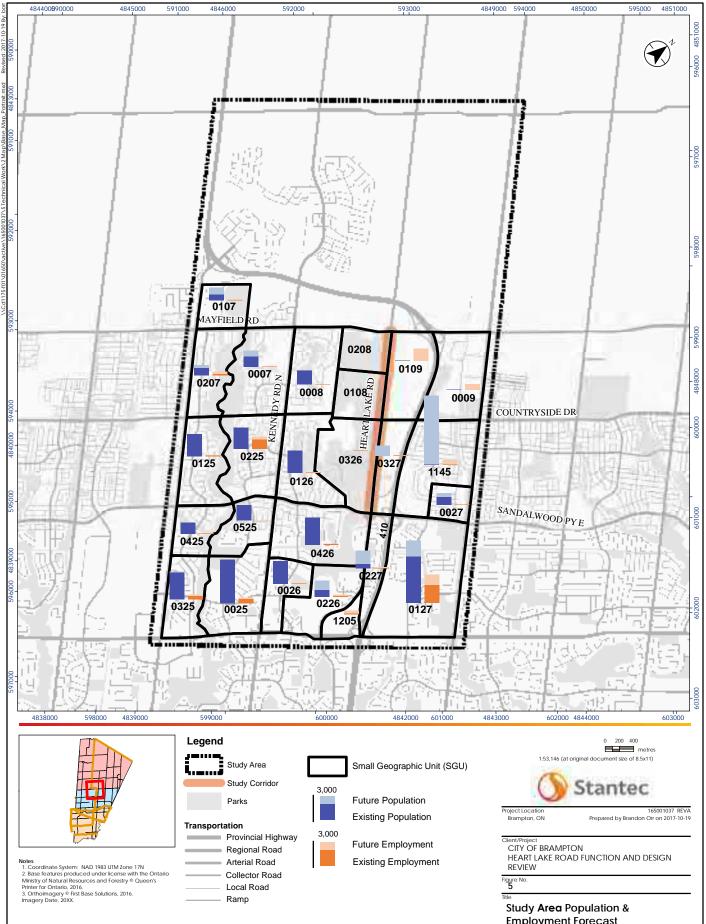

www.brampton.ca



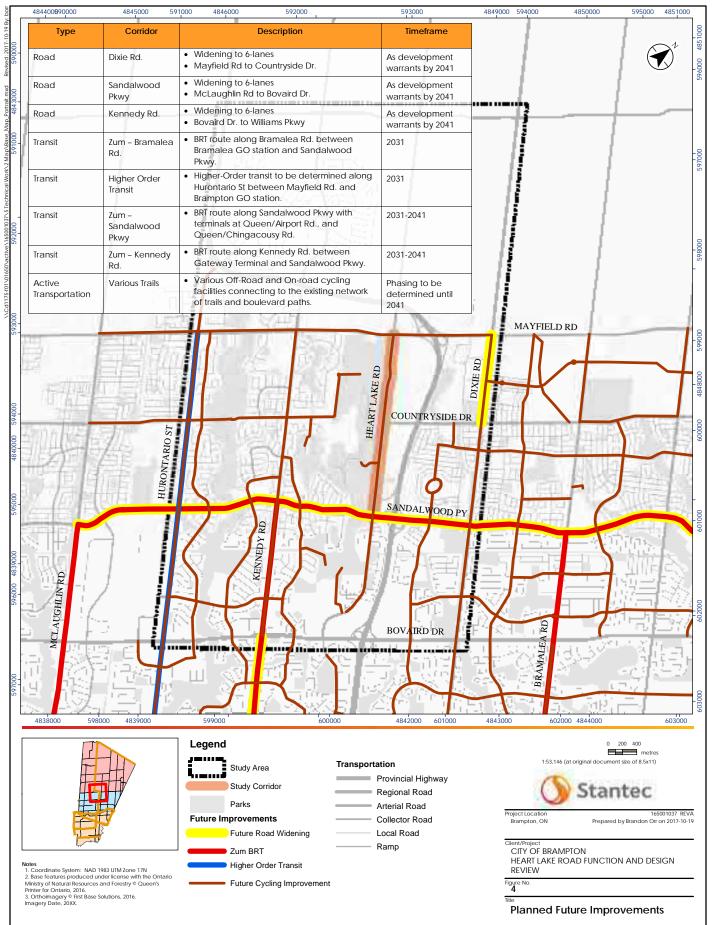
Heart Lake Road Function and Design Review Public Information Centre

Date: Time: Location: Thursday, November 2, 2017 6:30 to 8:30 pm Loafer's Lake Recreation Centre – Auditorium 30 Loafer's Lake Lane, Brampton





Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.


Weekday AM and PM Peak Hours

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Employment Forecast

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

ගම යන්ති.

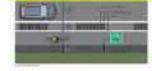
Travel Demand

SLA @ Heart Lake Road Demand 2016 / Network 2016 AM Peak

SLA @ Heart Lake Road Demand 2016 / Network 2016 PM Peak

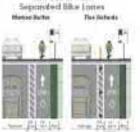
Forecast

Link	Horizon					
	No changes on Network		k Improved Ne Horizo			
	2021	2031	2041	2021	2031	2041
Southbound						
Heart Lake Rd, between Countryside Dr and Sandalwood Pwy	401	415	430	388	422	309
Northbound						
Heart Lake Rd, between Sandalwood Pwy and Countryside Dr	263	429	472	262	464	355


Alternatives Bike Lane Alternatives

Allowallys	Destrution
	Do Norhing
В	Two Lanes with Paved Shaulders and Rumble Strips
C	Two Lones with Separated Bike Lones
D	Two Lones with Separate Ri-directional Multi-Use Path on one Side
E	Narrow roadway and incorporate complete streets design
5	Hybrid Multi-Use Trail in Heart Lake Conservation Area
G	One-Way Road Operation with Separated Bike Lanes

Alternative B


- One direction on polysides
 If the loadway
- free Joins Sectionation oppose for events avery here's both
- Roudes a cyflir behinner wendes mill cyflidt

two i	OR et 1	with Form	ed S
Shoulder	n und	Bimble	Ships -
No. of the second second	Constants.	CI 104025	2010.2

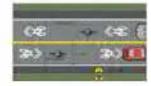
Alternative C

- Shifter in period processes with onlike signification
- One identities on tools arise of the conductor
 Provides and coloring does
- Include Source Non-Falls;
 Residence for contexted
- or within the type of the former of the second seco

Two Lones with

Alternative D

- Completely upplaced facility on overside of the roadway.
- b-deschord patrices (read to dom the sheet to go the approve deschort.
- Contre multi-se for cyclet cycl protection dat.
- Postas ophysicalis/hit lockven vendes and the pothysity.


Two Lonies with Separate Bi directional Molfi Ose Path on one side



Alternative E

- Weaking stadking bringsleavening that disclosingly high speed through holds.
- Such the spool of level to all only to
- Namos Précisionale de la di traffic casimigane de las
- Representation de la transférencia.
- Reduces the version period surgering of the Accounty on the controls

Normw Roadway/Incorporate Complete Streets Design

Alternatives

Alternative F

- Jerrie Facility type or Attentivities D
- Lesimagen askilling manufathetik takk behvark and radits/namesolerik tak theory have welling registration brid koest cycling sources.
- Enhance existing flean Lake Conservation Area Insk for agetag one
- Routing that goes through the comencestimates entropy of crong Heart lake Road

Alternative G

- One-that set solida mod oppration between Countration brive and the Hele 410 bits and.
- Convertione une la barrier protociera bi-association bileritorie.
- Left/Through vestication at Histori Laka Report/Countralate Drives
- bits come will include sinoxides one membre sinoxides one benefit sinoxides one south of Country and Connecting.

Rybrid Multi-Use Iroil

Roundabout

- Existing Conditions
 - Procreation/cyclin anvironment of the intersection despite existing time
 - Fetential for entrancoments.
- Roundabout;
 - · Iraffic Carning qualities
 - Reduces the hequency and severity of collible
 - Requires oriespo footprint
 - May makin more construction and cost
- Traffic signals are not warranted

Potential Roundabout diameter concepts

Mitigating Wildlife Mortality


the second se				and the second se
Matsure	timages	Location	thechivonuss	Preliminary Evolucion / Comments
Natural Area / Wildlife Signage	1	Installed in 2016	Low	May serve as an educational/awareness foo and reduce speed
Solar-powered Tashing amber lights to slow traffic		Installed in 2016	Low	May serve as an educational/awareness too and reduce speed
Opficalspeed bas		Installed in 2016	Law	Not effective of speed reduction.
Widife crosing shuchure (concrete cuiveit)	-	Installed in 2016, 100 m south of Countryside Drive	Hat	Sals in some areas may not be suitable for culverts Mut be combined with fencing
Widlife directional lending	17	Installed in 2016 south of Countryside Drive, 190 man the east side and 140 mich the west side	High, particularly when cotinected to a crossing opportunity	Mantenancerequired: populations may become isolated
lurte nesting beaches	*	Within installed deectional fending	Low	Provides safe nesting locations but may take many years before they te used
	PC	TENTIAL ADDITIONAL MITIGATION	MEASURES	
Mitigation Measure	dimages	Location	Elfectivieness	Preliminory Evolution /
Additional wildlife curverts	-	Hotspottacations 1 and 2	Hah	Must be in combination with directional fencing, Solili at theise locations may not suitable for culverts. However, atemptive installation methods can be considered
Extend exclusionary tending	1	Notspots 1 and 2, and along enline shietch of roadway where mortality has been documented	Hgh	Recommended in combination with additional nesting beaches and aco- paisages
Stop contratot intersections	STOP	It is required to determine it/where they are wanahied (based on MTO Guidelines) to make sure they ensure fluid and safe traffic conditions	Law to moderate	May reduce halficspeed but sow moving arimali will also need to be excluded from the roadway
Spacet costilare and romble sinps		His required to determine (/whore they would be required in order to act as effective traffic carring miscourses	Low to moderate	Will road on hattie spood but slow moving animati wit also need to be excluded from the road way. Cany forward for further analysis
lano narawing		It is required to detaimine flattere they would be required in order to act as effective traffic coloring measures	LOW	
raffic detection at Auylieid road	È	If jutilied, at the intersection of Heart Lake Road and Mayfield Road	60W	May reduce trafficspeed but unlikely to reduce widthe, vehicle mortality unless combined with other mitigation
lum restrictions	R		LOW	
	And and a state of the state of			

Countryside to Sondalwood

High

Permahent / seasonal toad clasure Has been used effectively in other jurstictions. There is an impact on local businesses This option was previously science out by the municipality.

Heart Lake Wildlife Mortalities

PUBLIC INFORMATION CENTRE COMMENT SHEET¹ Heart Lake Road Function and Design Review Brampton, ON

1. Do you have any comments regarding the information and displays you have seen tonight? *(use back of comment sheet if additional space required)*

OPTIONAL:

Name:

Email:

Address:

Please submit comments tonight or send by email or mail no later than Monday November 13, 2017 to:

Nelson Cadete

Project Manager - Active Transportation City of Brampton 2 Wellington Street W, Brampton, ON, L6Y 4R2 Phone: (905) 874-2552 Email: nelson.cadete@brampton.ca

François Tomeo, P.Eng., GDBA

Project Manager – Planning & Traffic Engineering Stantec Consulting Ltd. 300-49 Bathurst Street, Toronto, ON, M5V 2P2 Phone: (416) 598-6685 Email: francois.tomeo@stantec.com

¹ The information on this comment sheet is being gathered under the Municipal Freedom of Protection and Privacy Act and will be used to assist the City of Brampton with the subject study. Unless otherwise stated in your submission, any personal information such as name and address included in all submissions becomes part of the public record files for this project and can be released if requested to any person.

By Dayle and David Laing, Brampton residents

Background:

The RFP that resulted in the engagement of Stantec to consult on the **"Function and Design Review of the Heart Lake Road Corridor"** was conceived by City of Brampton <u>Council Minutes of April 22, 2015</u> to create the following **Heart Lake Road Mitigation Strategy:**

*"*3. That the Heart Lake Mitigation Strategy that identifies immediate, medium and long-term actions to conserve environmental and cultural heritage resources of Heart Lake Road while supporting employment, residential and institutional land uses, and addressing current / future transportation issues, be received; and,

4. That staff be directed to:

i. Continue to work with Ministry of Transportation to obtain approval of an intersection on Countryside Drive within the Highway 410 Permit Control Area east of Heart Lake Road, to facilitate future traffic from the new employment and residential plans of subdivision that abut Countryside Drive in order to protect the significant natural and cultural heritage resources of Heart Lake Road;

ii. Implement the proposed wildlife eco-passage culverts in partnership with (and funding support from) the Toronto and Region Conservation Authority and local developers; and,

iii. Undertake a Heart Lake Road Study subject to 2015 budget approval, to examine: long-term requirements for road infrastructure and management improvements necessary for development, natural and cultural heritage conservation and active transportation purposes; listing Heart Lake Road as a Cultural Heritage Landscape; and designating Heart Lake Road through the 2006 Official Plan Review to maintain a rural road cross-section; and,

5. That staff implement pavement markings along Heart Lake Road between Countryside Drive and Sandalwood Parkway in combination with warning signage focused on reducing speed through the three "hotspot" areas; and,

6. That this report and the P&IS report dated March 11, 2015 and Council's resolutions be forwarded to the Ministry of Transportation, Ministry of Natural Resources, Toronto and Region Conservation Authority, Etobicoke-Mimico Coalition and the Region of Peel. Carried" – (Council Minutes, Apr 22, 2015)

This directive by Council was the culmination of years of TRCA's Heart Lake Road Ecology Monitoring Projects, <u>2011</u>, <u>2013</u> and more recently <u>2014</u>, <u>2016</u>, David Laing's delegation of <u>Report for City of</u> <u>Brampton Heritage Board April 15</u>, <u>2014</u> (including a petition signed by 361 residents requesting Heart Lake Road to be listed as a Cultural Heritage Landscape), and City of Brampton's <u>staff report on Heart</u> <u>Lake Road Mitigation to Planning Infrastructure Services on April 13</u>, <u>2015</u>.

Consultant was hired to consider:

- Protection of the natural area adjacent to Heart Lake Road (Provincially Significant Wetlands, at risk/endangered wildlife, protection of water table)
- Conservation of the cultural heritage landscape (recommendation for official listing)
- Long range transportation planning (including vehicles, bicycles and pedestrians) now & until 2041
- Land use planning (including businesses (Heart Lake Conservation Area, Treetop Trekking, Lakeside Garden Gallery), Burnt Log residential community, and Emery commercial land)

All alternatives should address the above terms of reference, explaining how competing priorities will be considered and weighed. In our opinion, the options presented failed to address this adequately.

By Dayle and David Laing, Brampton residents

General Comments:

- Public Information Centre was held at the same time as PIC for Sandalwood Parkway, giving rise to confusion amongst attending residents who thought they were only coming to see Sandalwood boards. Many did not know there were 2 events in the same room.
- Board maps and details were small and difficult to read and comprehend.
- Traffic Volume Study performed mid-summer Jul 27-Aug 1, 2016 does not reflect school bus, parents driving kids to school, nor usage outside typical vacation time
- 2% truck vehicle volume indicates trucks use road, despite current "no truck" signage this low number is not consistent with our observation of much higher truck volume, where we have witnessed 4 trucks in a 5 minute time period
- June 7-13, 2014 traffic study conducted by TRCA:
 - Traffic counters: just S of Countryside; just N of 410 off-ramp N of Sandalwood
 - Av daily traffic weekdays: 5,435 vehicles
 - Av daily traffic weekends: 7,073 vehicles
 - o 85% travelled est. av speed 78 km/hr, despite speed limit on Heart Lake Road: 60 km/hr
- Caledon residential and commercial development Mayfield to Old School Rd was not considered
- Traffic avoiding the #410 traffic jams was not considered
- Vehicles create run-off pollutants, vibration and noise pollution that endangers wildlife in the Provincially Significant Wetlands, as well as wildlife/vehicle collisions.
- Heart Lake Road Wetland Complex is listed Provincially Significant Wetland #7 out of 2,260 wetlands, according to the <u>Ontario Wetland Evaluation System</u> (OWES) by Ontario Ministry of Natural Resources and Forestry.
- As a MNR Class 2 Wetland, the objective is "to ensure no loss of wetland area or function of provincially significant wetlands (MNR Classes 1 to 3) in accordance with the Wetlands Policy Statement". (Heart Lake Master Plan, 2006)
- "4.4.8.1The City shall require an EIS, in accordance with the Wetlands Policy Statement, where development is proposed upon lands within 120 metres of a provincially significant wetland. Such study will be subject to the approval of the City, conservation authority and the Ministry of Natural Resources. Development may be permitted adjacent to such wetlands or within/adjacent to non-provincially significant wetlands subject to the outcome of an EIS. The requirements of the EIS would address concerns related to development within/adjacent to such areas.

4.4.8.7 The City shall, in conjunction with secondary plans and related official plan amendments, require that subwatershed management studies consider all wetlands within the study area in the context of the terrestrial and aquatic ecosystems, their functions and how such wetlands will be accommodated within the development process". – (Heart Lake Master Plan, 2006)

• There is no consideration for studying the hydrology of the road wetland complex, which has been fluctuating recently in an unpredictable manner based on prior trends.

Alternative A – Do Nothing

• Option does not protect environmental features, prevent high vehicle-wildlife collisions, reduce speed of vehicles over the currently posted 60kph rate, address the unique cultural heritage, nor address the vehicle emission run-off that threaten the fragile ecosystem.

Alternatives B-D&F - Bike Route/Lanes/Multi-Use Trail

• These 4 options all require widening road allowance and filling in Provincially Significant Wetlands to achieve sufficient width for bike lanes/trails, which is not an acceptable option.

By Dayle and David Laing, Brampton residents

- No mention of lowering the speed limit from 60 to 40kph, which is needed for safe comfortable cycling whether the buffer is a rumble strip, marker buffer or marked buffer plus bollards
- Only Alternatives D&F consider pedestrian use (consider Burnt Log community residents that are otherwise relegated to vehicle use); the separated facility would need a wider road allowance
- Alternative F does leverage existing recreational trails through Heart Lake Conservation Area, only with TRCA approval. This will not create an AT network route suitable to road cyclists & commuters.
- new route from Countryside Drive into HLCA would not only require TRCA approval, it would need to climb a high elevation to the esker or cause the esker to be cut to reduce the extreme grade
- lower portion of HLCA trail converted from existing mountain bike path to multiuse suitable for road bikes is problematic due to fragile ecosystem, steep terrain and seasonal flooding in low lying areas.
- None of the options address wildlife/vehicle collisions

Alternative E – Narrow Roadway incorporating Complete Streets design

- Complete streets are designed to be safe and comfortable for all users, including pedestrians, bicyclists, transit riders, motorists, and individuals of all ages and capabilities.
- Cyclists sharing a lane with vehicles (especially trucks) is neither safe nor comfortable at 60kph and this option addresses neither reducing speed limit to 40kph, nor enforcement
- It is unclear how roadway can be narrowed further from existing 11.2m. The 7m Pavement width is already at minimum for rural arterial road.

Roundabout

- Roundabout is an acceptable treatment of this intersection
- Footprint is only minimally larger; land acquired from NE corner would not affect wetlands, which are located on west and southeast sides.
- Unclear whether extra cost is applicable if long term maintenance of traffic signals are considered
- Unclear on what basis traffic signals are not warranted not explained on board

Wildlife Conservation

- Options seem to focus on what has already been tried or considered and no new options are presented.
- Most mitigation measures listed as low success; those rated high have limited success, due to only the 3rd best hotspot being suitable for culvert and fencing. Hotspots #1 & #2 were found to have unstable roadbed soil. Unclear how these can now be considered and what has changed in the analysis. Extreme measures such as heavy equipment pounding the roadbed to stabilize would not be acceptable for wildlife protection reasons.
- Exclusionary fencing along entire stretch of roadway is a preferred option, although will not work on its own without reducing traffic speed and volume. It will still not stop all vehicle/wildlife collisions.
- speed bumps/rumble strips should have been considered as part of this analysis, not carried forward for future consideration
- Traffic deflection at Mayfield will not likely work when Emery lands are developed and used by large trucks
- Unclear why turn restrictions considered as low effectiveness this option would be preferred

Alternative G

• will prevent through traffic with some 2-way and some 1-way.

By Dayle and David Laing, Brampton residents

- Opportunity to create an amazing road with bioswales to clean run-off water, native plants, a more beautiful route to help sell the new Burnt Log community and benefit the garden centre.
- Speeding traffic makes exiting the garden centre difficult now.
- A bike route within the existing road allowance will connect our network to Countryside multiuse path, and make cycling safer along the road.

Conclusions

- Alternative G meets some the requirements as outlined in the study terms of reference.
- Heart Lake Rd speed limit should be reduced to 40kph with speed cushions (spring-fall) to reduce through traffic, also reducing some of the traffic at Sandalwood/Heart Lake where the collision rate is high.
- A roundabout at Countryside is efficient and also slows the traffic.
- Permanent fencing (not the temporary snow fencing) will help the turtles, frogs and swans.
- The road should be listed as a Cultural Heritage Landscape, as was requested in 2014.
- If protecting the 7th most important Provincially Significant Wetland in the province is not important, then one could reasonably ask what is important and why do we have such classifications.
- A proper balance of competing interests and weighing all the options will be good for our neighbourhood, the businesses and the wildlife, and protect the last of the natural cultural gems in Brampton
- Study should address how competing interest should be rated and ranked

Suggested Alignment Proposal:

Stantec

To:	Nelson Cadete	From:	Brandon Orr
	City of Brampton		Stantec Consulting Ltd.
File:	165001037	Date:	December 6, 2017

Reference: Heart Lake Road Function and Design Review – PIC #1 Summary

INTRODUCTION

The City of Brampton has initiated a Function and Design Review of Heart Lake Road between Sandalwood Parkway to a point just north of Mayfield Road. The objectives of the study are the following:

- Assess the feasibility of preserving the existing rural/cultural landscape character of Heart Lake Road;
- Assess the current roadway structure and long-term function with the intent of identifying opportunities to safely accommodate active transportation, while meeting other transportation demands;
- Review the roadway operational mitigating measures that have been implemented with the intent of preserving and enhancing the unique cultural heritage landscape and existing wildlife;
- Review the road infrastructure improvements planned along Heart Lake Road which are intended to deter wildlife from crossing the road;
- Examine the implications on land use, development, and transportation of listing Heart Lake Road as a Cultural Heritage Landscape; and
- Make appropriate recommendations for all the objectives.

As part of this study there is a consultation component to identify the needs and opportunities for the City. This memo highlights the various comments and feedback received through the first public information centre (PIC) held on November 2 at Leafer's Lake Recreation Centre between 6:30 – 8:30pm, including in-person, telephone, and email exchanges of completed comments received at the public consultation.

During the PIC 11 display boards were presented showing the existing and planned conditions along Heart Lake Rd and the surrounding area as well as a list of potential transportation and environmental alternatives for the corridor.

SUMMARY OF COMMENTS RECEIVED

58 people attended the PIC where, during the public information centre session and the days following, nine (9) written comments were received. The following summarises those comments:

- Stantec staff were reminded about the overarching background of the project including comments from city council meeting minutes from April 22, 2015 regarding the creation of a Heart Lake Road Mitigation Strategy which was the culmination of years of the Toronto Region and Conservation Authority's (TRCA) Heart Lake Road Ecology Monitoring projects between 2011-2016. The directive of the proposed strategy included:
 - 3. "That the Heart Lake Mitigation Strategy that identifies immediate, medium and long-term actions to conserve environmental and cultural heritage resources of Heart Lake Road while supporting employment, residential and institutional land uses, and addressing current / future transportation issues, be received; and,

December 6, 2017 Nelson Cadete Page 2 of 4

Reference: Heart Lake Road Function and Design Review – PIC #1 Summary

- 4. "That staff be directed to: i. Continue to work with Ministry of Transportation to obtain approval of an intersection on Countryside Drive within the Highway 410 Permit Control Area east of Heart Lake Road, to facilitate future traffic from the new employment and residential plans of subdivision that abut Countryside Drive in order to protect the significant natural and cultural heritage resources of Heart Lake Road; ii. Implement the proposed wildlife eco-passage culverts in partnership with (and funding support from) the Toronto and Region Conservation Authority and local developers; and, iii. Undertake a Heart Lake Road Study subject to 2015 budget approval, to examine: long-term requirements for road infrastructure and management improvements necessary for development, natural and cultural heritage conservation and active transportation purposes; listing Heart Lake Road as a Cultural Heritage Landscape; and designating Heart Lake Road through the 2006 Official Plan Review to maintain a rural road cross-section; and,"
- 5. "That staff implement pavement markings along Heart Lake Road between Countryside Drive and Sandalwood Parkway in combination with warning signage focused on reducing speed through the three "hotspot" areas; and,"
- 6. "That this report and the P&IS report dated March 11, 2015 and Council's resolutions be forwarded to the Ministry of Transportation, Ministry of Natural Resources, Toronto and Region Conservation Authority, Etobicoke-Mimico Coalition and the Region of Peel. Carried"

One member of the public gave a very detailed response to the PIC and felt that most of the options presented had failed to address the study's priorities adequately and that Alternative G was their preferred alternative because of the following:

- Traffic Volume Study performed mid-summer Jul 27-Aug 1, 2016 does not reflect school bus, parents driving kids to school, nor usage outside typical vacation time;
- 2% truck vehicle volume indicates trucks use road, despite current "no truck" signage this low number is not consistent with our observation of much higher truck volume, where we have witnessed 4 trucks in a 5-minute time period;
- Failed to adequately emphasise the lack of speed limit compliance on Heart Lake Road;
- Caledon residential and commercial development Mayfield to Old School Rd was not considered;
- Traffic avoiding the #410 traffic jams were not considered;
- Vehicles create run-off pollutants, vibration and noise pollution that endangers wildlife in the Provincially Significant Wetlands, as well as wildlife/vehicle collisions;
- The current study does not comply the Ministry of National Resources Class 2 Wetlands Policy Statement as outlined in the 2006 Heart Lake Master Plan;
- There is no consideration for studying the hydrology of the road wetland complex, which has been fluctuating recently in an unpredictable manner based on prior trends;
- Alternatives B-D & F all require widening road allowance and filling in Provincially Significant Wetlands to achieve sufficient width for bike lanes/trails, which is not an acceptable option and no mention of lowering speed limit to 40kph, and none address wildlife/vehicle collisions.

December 6, 2017 Nelson Cadete Page 3 of 4

Reference: Heart Lake Road Function and Design Review – PIC #1 Summary

- Alternative F, although leveraging existing trails through Heart Lake Conservation Area, will not create an Active Transportation Network route suitable to road cyclists & commuters, it would also present considerable grade changes that may be difficult for some cyclists, and the existing trail is prone to seasonal flooding.
- Alternative E did not provide enough protection for cyclists and pedestrians from road traffic, did not include speed reduction to 40kph, and unsure about whether the road could be widened any further based on existing classification as a rural arterial road.
- Alternative G preferred as it will provide a separated facility for cyclists and reduce the number of vehicles on the roadway and reduce the number of conflicts with wildlife. Also presents opportunity to create bioswales to clean run-off water, native plants, and provide a more beautiful route.

The remaining comments provided by the public were general in nature including:

- A desire for enhanced active transportation facilities on Heart Lake Road, all comments mentioning active transportation facilities preferred a separated facility type;
- Recommendation to provide active transportation connections to Esker Lake Trail to promote their use for accessing the conservation area;
- Recommendation to address future traffic with Active Transportation and Transit instead of promoting the private automobile;
- Recommendation to implement traffic calming measures such as speed cushion and rumble strips;
- Preference for a roundabout at Heart Lake Road and Countryside Drive to act as a traffic calming measure, although more information regarding why signals or stops signs are not warranted;
- Heightened consideration for wildlife and the environment in the corridor as it is the 7th most important Provincially Significant Wetland in the province. This includes a preference for a greater degree of exclusionary fencing along the roadway and reduced traffic speeds;
- Desire for increased public awareness of the significance of the provincially significant wetland;
- Proper balance of competing interests and weighting for all options that consider the local neighbourhood, businesses, and the wildlife;
- Concerns about developments adjacent to the corridor and their environmental impacts on the corridor;

STANTEC CONSULTING LTD.

Brandon Orr, BES, MCIP, RPP Transportation Planner

Phone: (416) 507-3487

December 6, 2017 Nelson Cadete Page 4 of 4

Reference: Heart Lake Road Function and Design Review – PIC #1 Summary

Brandon.Orr@stantec.com

Attachment: Attachment

c. C.C.

The City of Brampton is reviewing the function and design for Heart Lake Road between Sandalwood Parkway and Mayfield Road.

Your input is important

Please join us to see what is being recommended as the preferred solution.

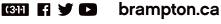
Wednesday, May 16, 2018 6:30 to 8:30 pm

Loafer's Lake Recreation Centre Room 1 (30 Loafer's Lake Lane, Brampton)

About the study

We are examining:

- the long term role and function of Heart Lake Road
- design requirements that address the:
 - o future multi-modal transportation demand
 - o planned land use and development
 - o protection of environmental features and wildlife
 - o recognition of the unique cultural heritage of the study area


If you have any questions or wish to be added to the study mailing list, please contact:

Nelson Cadete, Project Manager, Active Transportation

City of Brampton 2 Wellington Street West Brampton ON L6Y 4R2 Phone: 905.874.2552 Fax: 905.874.2099 Email: nelson.cadete@brampton.ca Francois Tomeo, P. Eng., GDBA Project Manager, Transportation Planning & Traffic Engineering

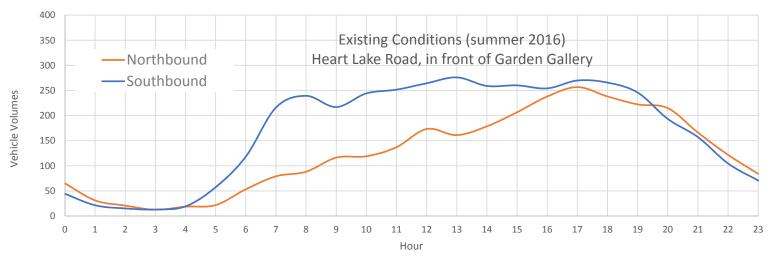
Stantec Consulting Ltd. 300-49 Bathurst Street Toronto, ON M5V 2P2 Phone: 416-598-6685 Email: francois.tomeo@stantec.com

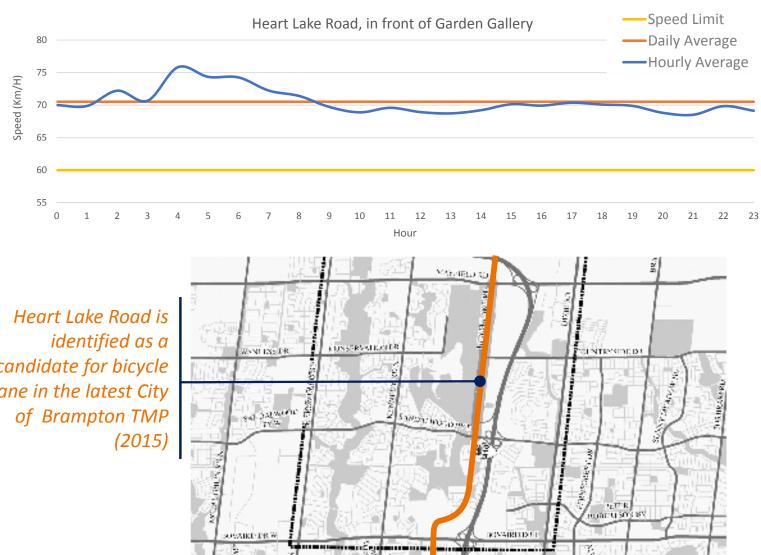
LET'S CONVECT

Heart Lake Road Function and Design Review Public Information Centre

Date: Wednesday, May 16, 2018
Time: 6:30 to 8:30 pm
Location: Loafer's Lake Recreation Centre

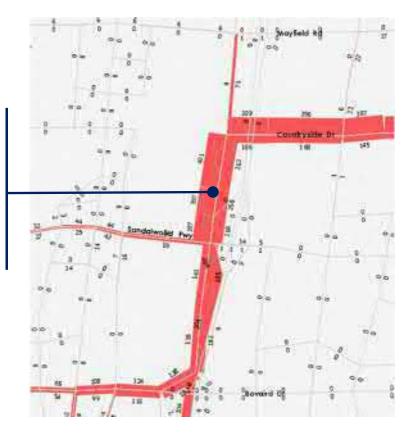
Room 1 30 Loafer's Lake Lane, Brampton




Key Issues and Challenges

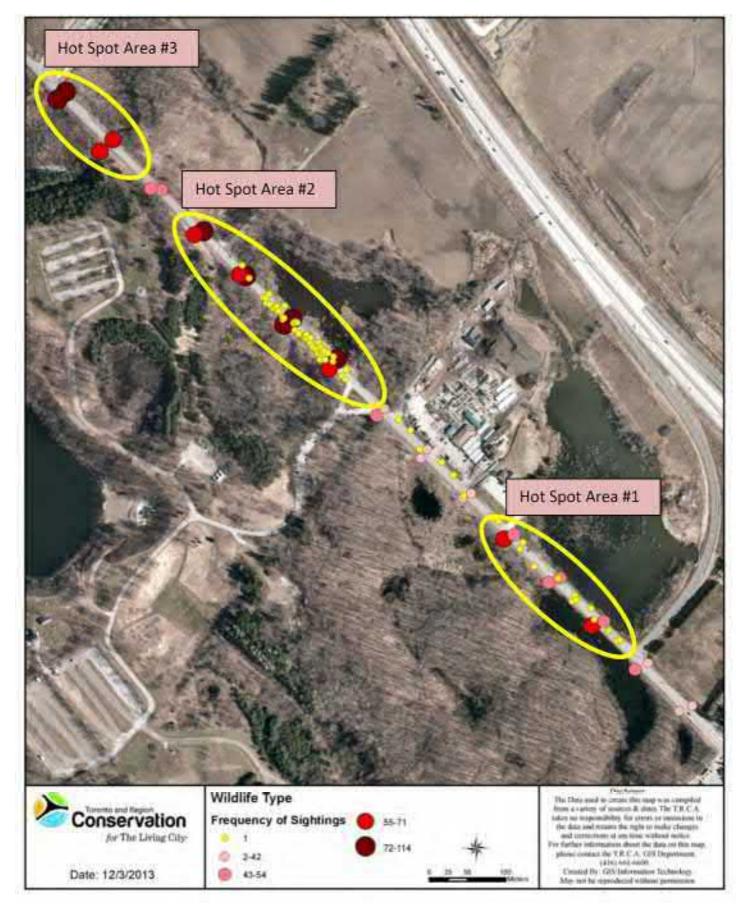
MULTIMODAL TRANSPORTATION

Existing and forecasted volumes do not justify widening



candidate for bicycle lane in the latest City

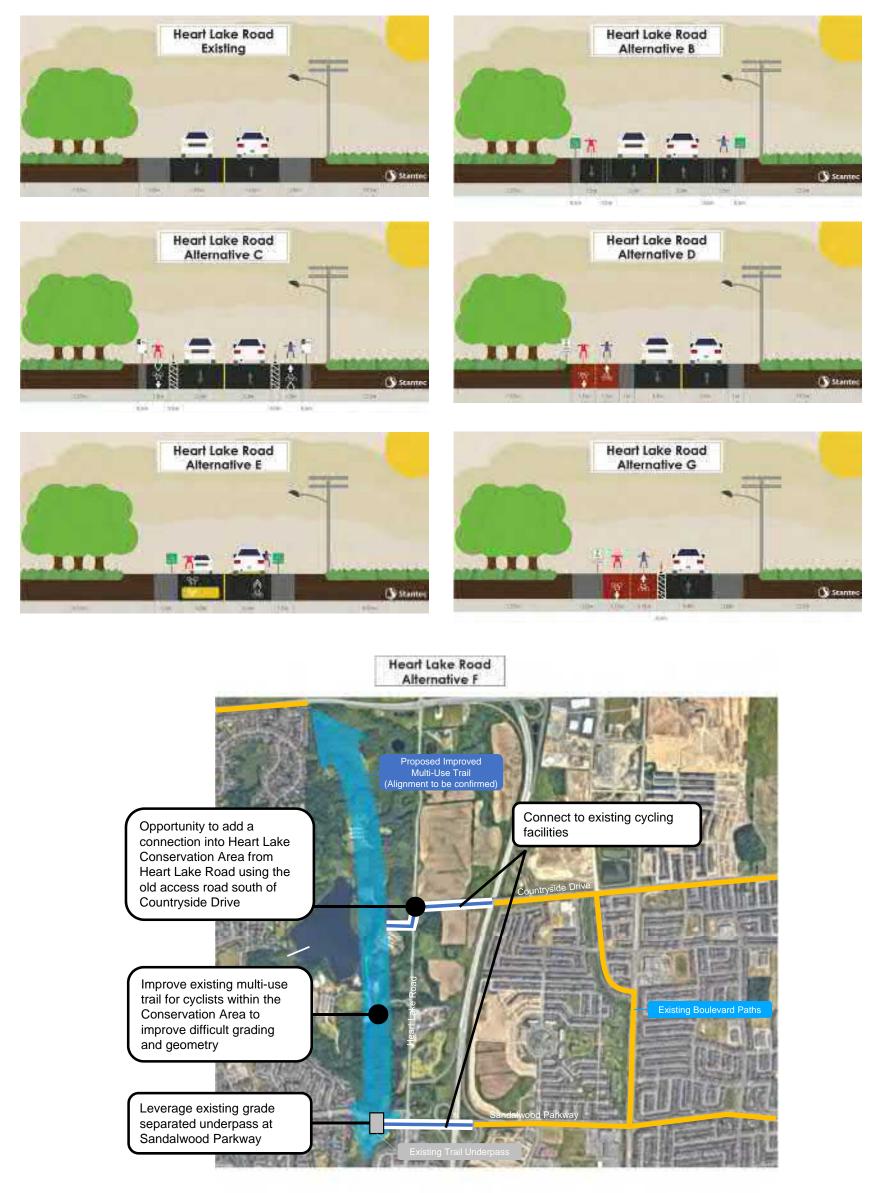
Vehicular travel demand on Heart Lake Road is concentrated between Countryside and Sandalwood



Key Issues and Challenges

WILDLIFE MORTALITIES

CULTURAL HERITAGE


- Study area is not currently listed on the City's Municipal Register of Cultural Heritage Resources (2016) or designated under the Ontario Heritage Act (OHA)
- Brampton Heritage Board received a delegation from the public seeking the possible recognition of Heart Lake Road as a cultural heritage landscape; the recognition was not defined at the time
- Full Heritage Impact Assessment must be conducted for the study area
- Roadway crosses one of the most Provincially and Regionally significant natural areas within the City of Brampton; Heart Lake Road is visually distinct from the surrounding lands since it is mostly bordered by natural areas that have not been used for residential development

ALTERNATIVES

TRANSPORTATION ALTERNATIVES

ALTERNATIVES

TRANSPORTATION ALTERNATIVES

TRAFFIC CALMING

Roundabout at Countryside

Stop control or traffic circles at intersections

Speed Cushions Lane Narrowing with rumble strips

WILDLIFE MITIGATION

Wildlife crossing structure (concrete culvert)

Turtle nesting beaches

Wildlife directional fencing

Natural Area / Wildlife Signage

EVALUATION CRITERIA

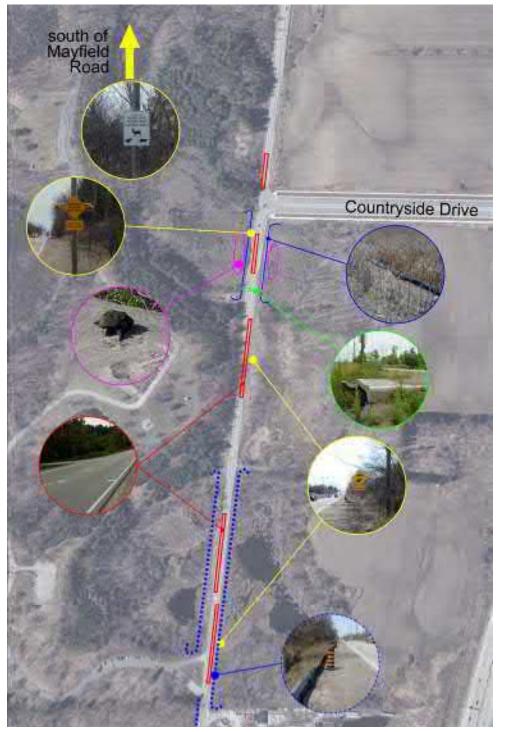
Category	Criteria	Factor
	Roadway geometry	Satisfies desirable design criteria
	Access	Proximity to community facilities
Multi-Modal	Traffic	Impacts to traffic operations
Transportation	Traffic calming	Reduce speed
	Cycling	Attract cyclists and promote bicycle connectivity
	Safety	Improve safety for all road users
	Built cultural heritage resources and landscapes	Preserve cultural heritage features
Social and Cultural	Agricultural resources	Minimize impacts to agricultural lands
Environment	Land use	Minimize impacts to existing residential/ recreational properties
	Economic environment	Accommodate planned development and growth
	Designated natural areas	Minimize impacts to designated natural areas
	Wildlife and terrestrial habitat	Minimize impacts to wildlife
	Vegetation	Minimize impacts to vegetation
Natural Environment	Surface water and drainage	Minimize impacts to surface water and ground water
		Minimize impacts to designated natural areas
	Terrestrial habitat design factors	Minimize impacts to wildlife
		Minimize impacts to vegetation

EVALUATION OF TRANSPORTATION ALTERNATIVES

Drian			and Rootle Drips	Two Leves with Seats and Date Layon	Two Lates with Deparated Di- description Mathematic Party on one	Narrow Rosinwy with Stared Bits Laws	Hybrid Bloth Dise Trial in Heart Lano Generation Ama	G Cest way operation with Represent 8 he Laws
ă -	Fatura			Period by				
portation		The sensing refresher law welfor of ~3.5m make the modeway mean combinable for case and promote failer speeds	 Wonki opene the rotate lie knew to be neurowed to S.3.4 and the addition of a peaked 2.5.4 mendes studies to the end 1.5 en period studies for styling with and another 0.5m of unpowed abadem Theoreming unperiod abadem to work in we to be periody assess. (MIO, 2010) A 0.5m pended buller workd ter mittanet. 	When they are the other is here to be narrowed to 5 the analysis and the transmediate 5 the analysis and the transmediate 5 the anywel induced biogete large and another 0 three transmediate modifier. The contingene parallel modifier would have to be partially powed set of history believes would have to be installed. (MTO 2013) A 5 the particle action would have required.	 Where names to the voltage of them to be namework to 3.5 minutes 3.0m to directional multiples backly work? To please the white the sould be pleased for white the sould in white sould of the machiney with a 0.5m standard backly. This work? sould request the which the times in the white the that its the sould be write mate. (WTO, 31:10). A controlled crossing is inspecial and controlled the that the sould be accurrently being and magnetic and controlled the that the standard back the that the sould be accurrently being and magnetic and controlled the that the standard back that the sould be accurrently be accurrently be accurrent to be accurrently be accurrent. 	 Provid sequence for voluntary way to be narrowed to S.Sm and the overall proved worth of the backway pais narrowed with thiff countring measures along the reactions with adding speed post-cens and halfs, circles. The pactorate is to marke the read- work was a to marke the read- back of the to marke the read- back of the to marke the read- back of the to marke the read- solution and subservised work. 	 Would repairs appropriate multi- sate that connections between outping bouleware paths along Country and Draw and Semistive of Parkway to comment price eccentry internal trait within the Heart Later Conservation Area. Potatimum would also be accommodated on the multi-see trait. Relationsheart of the eccel prairies traits and provide access traits entering traited access traits entering opposite Country side Drive to responde. 	 Ohunga Head Lutve Power ke and way operation going configurate botteen Sendanced Porteeny and Countrylets Draw. This attornative will access the mixed distance hum Head Later Power don't be the Conservation Area to 1 Jilon, and fram the Conservation Area to Head Later Road (anoth) to the Conservation Area to 1 Jilon, and fram the Conservation Area to Head Road (anoth) by 4 Jilon
Multi-Modal Transportation	Proceedings to Community Facilities	 Enisting versitality accesses to facilities maintained. Canterilly requires cyclicits to starse the rootway inde with traffect along theast Lake Soart which provides a direct access which provides a direct access to the main-keart Lake Communities Avea Entitance and other properties along the comptor 	 Control voltación acciona to Badición maintained. Would provide chied acciona to the main Heart Lavie Conservation Area anthresse off of Heart Lavie Read. A coldar All heart to do with thirt carrol heart Lavie Read to poposi the Conservation Area anthresse. 	 Easting volves in access to Bodians mainteined While provide direct access to the main Head Lake Consideration Avec extension of of Heart Lake Road. A cooled with heavity take Road to access the Conservation Avec entrained 	 Obtaing which is a constants tacking nearbound of Which periods a direct access rolo for Next Lake Conservation Area and technic both of points for active thereportation road users if the mail case for ity were to be period on the vect add of the teachers. 	 Conting Vehicular science to be if we need arrest. Would provide does access to the main Procet Lake Denservation Arrest entrances off of Heart Lake Road and would require cyclicits entrance from proceeding and entering from pools for processing eventually lake of leafts. 	 Would provide a street access rate the Heart Lake Connervation Area and policies conduct points are preleted accessing for articiting and outing. Dises not provide continual/timed access to all deal nations along Heart Lake Road. Tail: coald also accommodate pedientrain 	 Vehicular access to destructorit along Hayrt Lake Road will be inhine to access from the south.
Tatio	impadts to Traffic Operations	 Manipun coacting sportations. Does not promote cipding of webling, does not conform with the manupal transportation masking data webs. 	 Little to no implete on traffic operations 	 Utile to no repetito ne traffici operatives 	 Etherts no impacts to halfse coavations 	 We present the relative spectra on adjustry control to the relating the control relation specified for through whickes 	Little to rollinguido en traffic operatives: Contenyis to municipal transportation meeter plan kinon.	 Significant equads to traffic considerable acts travel distance for whiches to travel exclution relification conder. Would also generate impacts on address consider
Spint	Rutura Specif	 The mediacy will maintain poor speak compliance sale at TTN, indicating that might TS of drivers there at a better the posted speed inst. These Takes Road also includes adversary and warning signage which is mean to road average adversal hazard. 	 The operating speeds will be reduced to SDen's lu adhere to appropriate design speed standards for 3. Set whicale lane within. The random step buffer will further re-inforce memor metages rates even if results, the condor doing write and rates. 	 The operating speech will be motioned to Stands to adhere to appropriate design speech absolute the 1.5m setucate lines within The physical Number bollerbit and institute a second wall to make the moderay look more subset speech. 	 The operating ignedia will be induced to SWARh to advers to appropriate design speed standards for 3.2m vehicular lines within: Diffundar Pilar Breek Speec Perring Tack, Faces 2000; 0970, 2000; (NFD, 2013) 	 This specifing speaks will be induced to Clienth to adhere to appropriate design speed vanideds for 3 the witchair lone widths. The addition of haffs category memory to suff ast, speed cathoors and haffs: gricks have been function by effective edge to reduce witchair speed, jultime and revision suffy along to drops. 	 The matching will remain mostly undranged bayond infrasection improvements of Heart Lake Road and Countryade Drive Half will have minor politike impacts on millio speed. 	 Increase in vicinities is forecasted on Country and Dive eactioned due to forced right tone northboard at the menedian of Peart Lake Road and Countryside Drive, it may also increase overall top length to vehicles as it torous at vehicles is go nonthboard. The sphon may knowce expecting.
Cycling	Atract Cyclists and Protote Bicycle Connectivity	 Currently no cycling intrastructure is in place. 	 The agend stude will conset with fature and evelog books wit pate on Govergede Drea and Sectioned Parking The bolky type for a low with colorenses for cycles. 	 The separated boyos laws will sorrect with every books and parts on Countywelle Drive and Sandalacod Fahavay. This facility type has a high attactiveness for cycloids. 	 The separated bi-discloral multi-seeting will correct with evening bookward paths or Discriptole One and Bondakood Pathany The teckly top-tree shipp structiveness for cyclob. 	 The shared route will connect with earling bookward paths on Coontrastic Draw and Sandahood Pathwar This Socials type will be arbantive to speciels basised on the official pathward on	 Drivet intertial connections to Hear Loke Conservation Ans. will be made to the exacting booleand paths on Constrained Drive and Sandolencol Partway A new modion of the increasional that through the Conservation Acceleration will controlide a gap at the Enter Loke Reconstraint Trail. 	The separated bi-directional multi-centrol will connect with estiming toolerant paths on Country web Drive and Sandorscood Partwate. This facility hose a high attractiveness for cyclate.
Solati	Improve Solim For Al Read Users	 The roadway will remain unstanged. Speed compliance will remain law and there are no to 50° collenge measures to help rodue the seventy of collence with vehicles or cyclairs beyond the soliding speed optical trans. 	De openting speeds wille sokkaad to Stärch is achees to approprate design speed doodarch for the samwood larve. The issue speed install west towards vedazing the seventy of colleases and the pened shouldens will reduce conflicte behave speeds and whites.	 The operating speech will be websited to 50exth/ to adhere to appropriate design speed standards for the namowell street. The debuilded begins lenses with fundia bulleth will significantly indice confirm belavem cyclots and advace providing physical and source case separating the less modes 	 The operating speech will be induced in Stlench to advers to appropriate tangle speed standards for the namesed larves the separated to directional multi-case path will approximity instances by providing installed separation between typicity and vehicles by providing installed separation between the technologies 	 The operating speech will be noticeed to Scientifits adhere to appropriate datage apoint standards for namowed loans. To disc calming measures audi- on speech calming measures and function will achieve and further colous will achieve and further ordered vehicular speech. There is in: addicated space for operation of the readway and existing conducts will all remain. 	 The roadway will remain mostly uncharged beyond inferencian improvements at heart Law Point and Countryside Drive that will have more posterior moutes on traffic speed and colorom. 	 One-way operation would allow optists to save the southbound larse for travel along the conduct separated from haffs which anotic entance cyclist solely gravity.
Built Cultural Herbage Research and Earthough Earthough	ek Features	 Notanal attornation adjusced to the roadway remain intent comprised in seried topography, unitantic toward integer, however areas, and roking agricultural lends 	 Netral characteristics educed to the madeay remain intact composed of used logography andards, meetingan timeled areas, with riding agricultural areas. 	 Network characteristics adjacent to the readed instruct inter- comprised of varied tapoprophy wellarity trade tapoprophy antise, and table optimizers lipols 	 Nature characteristics adjoined to the tradeoly remain HDLT, complement of convol topography, well-and/convol topography, well-and/convol topography, and/convol topography, foregoing and/convolutional and/convolutio	Heredu bonnet wir der Grund Visiture Unscherkliches adjacent to die interferig immen intert compresel of series forography weltende, treet intpre-treeted amme and milling agrouptural perior.	 Kelumi characteratica adjacenti - to the coolinaty remain infact comprised of used topography estimate, tread robust topography arous, and robust opportunati arous, and robust opportunati arous. 	 Netural characteristics adjacent to the readway renam intact, comprised of vened locography wellands, tweet states, threemed anone, and rolling agrounds at seek.
Agronu Agronu		 No impacts to apricultural lands located north of Deartryside Road-wast aids of Heart Lake Road. 	 No mpoch to aprovfural londs located north of Countrylide Roschesst alde of Heart Later Fd. 	 No impocts to apricultural lovels socialed number of Country-olde Roucheast adv of Heart Lake Rd 	 No expansi to aproving lands located north of Countryinds Readoused ade of Heart Loke Rd. 	 No impacts to oprioritumal lands locatient runth of Countryside Roadbaast side of Heart Luke Rd 	 No impacts to agricultural lands located north of Countryside Roathaut ada of Heart Lake Rd 	 No impacts to agricultural lands iscaled sorth of Countrylede Boadward of Heart Lake Fat
and Cultural Environment set 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 2	Mmmue Ispacts til Eesting Recedential Recreational Properties	No organis to residential developments planned in the Memos Development north of Lokeet Gantein Centre No organist to recreational families of Heart Lake Conservation Area	 No repach to rendering doubtments planned in the Methic Developmen north of Lekende Geden Dette No repact to recreational facilities of Heart Leke Domentation Area 	No mpach to residence developments planned in the Netrus Development with of Untrade Greden Decte No mpact to recreational Sections of theast Lans Conservation Assa	No reports to trendection developments of the Wethus Development with of Lokewish Goden Carlies No report to reconstronis Socilies at Heart Loke Conservation New	No reports to renderital devolutions to prevent of the Methics Devolupment control of Lateratic Gostein Ceche No report to recreational Socilities at Heart Later Conservation Array	No expects to readernal developments planted in the Metrics Development and in the Lowest & Grades Device Enturies f connections to existing secretarias decitive at Heart Lake Conservation Alexa.	 Significant impacts to existing facilities. Would incurse vehicles leaving the properties along the modules to sever much further to go southound Would increase the dollarce whickes accessing the combor would have to make!
Social Social		 No impact to planned mdustral exployment development. Private School development renderful development within the Countryada Wilague Secundary Philic area 	 Yes import to planned industrutiverplayment development Private Stress development residential development residential development adher the Country/da Villages Secondary Pere zero 	 No. report to parcent industrial employment development. Private Bohost development methemioli development methemioli development methemioli Countrywite Wegne Secondary Plen seen 	 As argust in playned industrial lengthycent development resolution development resolution development within the Countryade Wages Senordary Plan and 	No report to planned industroliverskopment Baktepinent, Private School disvikipment meldestal dewikipment within this Carattryster Wilages Societary Para area	 No impact to planned industrial empky mech development. Private School development, esolential development, esolential development within this Country side Villages Sacondary Plan area 	 While require refrictes lowing the anoperties story front Lake Road to taked reach further to go southboard. Would increase the datation vehicles accessing the contributed yould toward to thave.
Designat Natural Areas	ed Minimico Seports In Designated Natural Areas	 No impacts. 	 Work will not occur publicite of the Right of Way therefore no impact to Despecial Markeni Areas 	 Work will not occur nuturity of the Royts of Kiny therefore no impairs to Geographic Statuses Areas 	 Work will not accur subside of the Right of Kiny Transform no impacts to Designated Natural Analos 	 Hish will not occur cutside of the Right of Way therefore no report to Designated National Aread 	 Mnor impacts to segretated ansas practs Heart Lake Conservation Area 	 Work will not occur outside of the Right of Way therefore oc- impact to Designated Natural Notes
Natural Environment	nt Mminipe	+ Noirgada	 Provet also, bless man, deter furfic moding alters that exist storig grouel shoulders 	 Prest studies may deter lute resting sites for oval ang gravit shouldes 	 Pawel strukter sofara mag detar furte resting ideo Sat exist along gravel struktera 	 Continue to implement the widths signs, concrete box culturet increasing and attitude turble reading recently. 	 Relativersel to the ending tailfoid access road entance may introve obte easiling habits atten theat Lake Economistic Area. 	 No equida
Weter	te Mininico Impacts to Vegetation	 No impacts to seguration, so change to Right of Way. 	 No repects to expetition re- charge to Right of 70xy 	 No repacts to vegetation no change to Right of High 	 No reports to reproduct to charge to Right d'Hay 	 No expects to skpatistion (ro) durings to Right of Way 	Batroad of oid growth acgotation within the ociding tailoid access road estrance	 No impacts to vegetation, no thange to Right of Way
Diamage		 Set and/or sent from ruled within operations can be an changes in the water quality to neighboring wetgends and polarizative reports and and granitization granitization No change to provid portion of idealities 	 Set and/or sand trun road setter operations can oxide charges in the solar quality to neighboring settends Pareng a portion of the security should credit greater interview cover 	 Saf peder seel from road aufer operations can cause therpan = the state guilty to neghtcoreguestimati- Faveg a potent of the shoulds- avoid course guater rejections toyor 	 Set and/or sent hori read active operations that cause thanges in the value guality to metghooring wettands; Paving a portion of the shouldar would create gradient importants tories 	 Self and/or solid hum read earlier operations can cause changes in the value quality to meghory usefamily No plearment increase to existing shouldsr. 	 Result or fluids originating from whiches and sait distributing whickes after the walking tailoid access road estimote 	 Saft and/or sond them read whiler operations can be be dranges in the wake quality to metabology wetlands No servement researce to according shoulder
Scientig		11	- 0		- 7		+ 10	- 4
- Mosti	- Thursday							
- Mosti + Node	rately Protornet	13	11	~1	1	**	¥4.	3
- Mosti • Node		 √3 −4 <2 	- 4 × 0	- 3 - 0	-1	- 1 - 1		- 3 - 3 - 8

EVALUATION OF TRAFFIC CALMING ALTERNATIVES

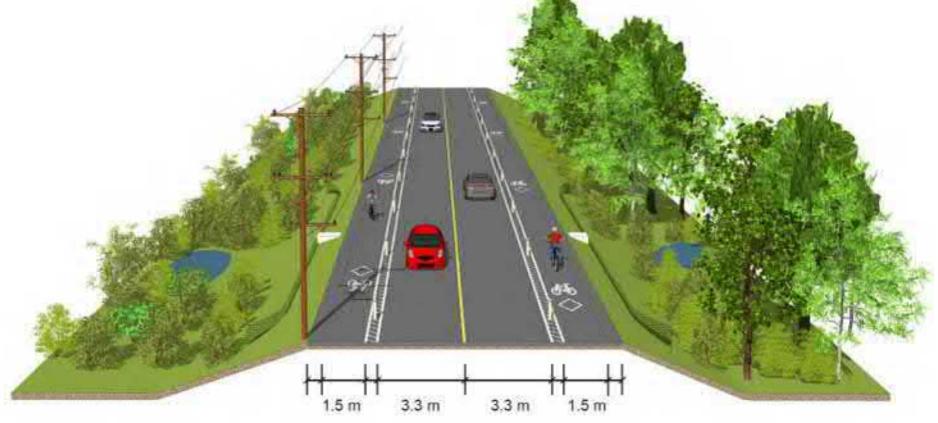
6.			A Da Hoftiky	E Bog onthol in hafts circles at intersections Parat Lake Generation Assetter Residential Deproprint()	C Special Cambions Lasis Namuwing with combine strips	D Traffic Dirtlection at Countrywide Drive One way operation with Reputyled She Lance	E Roundations of Courses (106 Option 1	F Boundahout at Countryside Option 2
Gishires	Ditaria	Factors						12
ortation	Rostver Geonotics	Sotation Describe Desgr Critera	 The existing vehicular bine webfa of 3.5m make the nadway room combrishle for case and provide fusion speech. 	Added stop signs or hoffs- ords to the Heart Lake Road and Concervation Ansi Entrans. Traffs ordes consist of a target bland housing if the cashs of an intervention which inquints validation to houst through the intersection and around the stand. Traffs toped would/have to be reduced to Standard to be reduced to Standard to be reduced to Standard to be re-designed as within a collector or local roadway.	 Speed tubbots are recent sectors of the costway designed to discourage motor values, dreams from traveling all eccessive speeds. There are an acceptable measure for madways with how rollwaise. (MTC) 2015; To implement the madures and Heart Lake Food, the traffic speed would have to be tockcet to plorn h and the roletway would have to be achieved as other acceleration or rold rockets. (MTC) 2016; To implement the madures and the plot is the traffic speed would have to be tockcet to plorn h and the roletway would have to be achieved as other acceleration or rold rockets. (MTC) 2016; The speed would have to be to the speed in the speed in the speed of the speed would be accelerate to the speed in the speed of the speed in the speed of the spee	 Readway which be closed to general huffls going south from Coerception Drive, but would still allow local faultic and general toffic estimations. Change Henrol Lole Road to see way operation going northbound hermion Southbood Parlowsy and Countrysido Drive 	 Convert the existing con- egnilized intersection all Countryeds Drive to a fournitized. The would replace the soliting their measurement monthlycured and southhoused approaches with yeiching approaches going accurd on toreed silend Their option is lead complex and extends onto the west portion of the allefreection. 	 Convert the solating rom- signalized intersection at Countryside (Inventors roundbote). This would reduce the existing the november institutional and solationarial approxima- solationarial approxima- going aband a resed sided. This optical tradius man completity without impacting the TNDA lands bit requires the relocation of type intervention.
Multi-Modal Transportation	Traffic Calming	Robuce Speed	 The coubles will mantain poor speed complexes with the oxisting complexes with the oxisting complexes with at 11% and 85% percentle speeds at 800mh despite the porcestigned limit of 60km/h. 	 The speed tirvit will be reduced to Stervit le others to appropriate design appreciations for harfs cardios. Traffic orgins are effective at promoting speed reduction and reducing vehicular volumes. (Catardua Piles Steat) Space Planning Task, Force, 2005) JWTO, 2009; JWTO, 2011). 	 The speed in it will be reduced to Silverit to achieve to appropriate design speed existince. It is speed customer speed customer speed customer speed customer is highly officative at induceg asserd and rectaining achieves in bighly officative at induceg asserd and visible and dower without a set attainantly between nervow road widths and dower without a set attainantly between nervow road widths and dower without a set attainantly between nervow road widths and dower without a set attained between nervow road widths and dower without a set attainant between nervow road to be a set at the set of the set of	 This may initially robust traffic volume, however, defaulting traffic away fram the consider will not help reduce traffic opend along the consider and may even promotio higher opends as there are two idodocles and solvestain interactions along the roadway. It would effectively increase volume an existing politicity of that matching and avoid traje minimal impacts on travel speed despite a potential robustion in the speed limit to Sternith. It may also increase coveral traj length for vehicles as it taxes all vehicles to go minimal with the maxwell operational multi- branettar assay even of trajecture. 2010 	 The roundstocet will physically require all wohning to rock of how assective other to pase around the racio island. This is highly effective compared to the coving most-scale involvements that are ampediad and live- towing. 	 The roundation will physically requested versions to reduce their expective roder to pass unsund the raised stand. This is highly effective compared to the acting morth-south movements that are unimpoded and free- fibring.
	Safety	treptose Solivly ky al Road there	 Carmelly no cacking altractive is in place 	 A reduced speed limit and addison of a hulfic area will reduce speeds doing the readway and improve sydekt conduct. 	 A reduced speed limit and addition of speed contacts will enduce speeds along the methway and improve cyclist conflot. A nerrower readowy will have some effect toward encouraging shave speeds with some more improvement to cyclist conflot. 	 Lower tailly volumes will improve cyclist contact somewhat, but there would be little improvement to tailly speed. One-way operation would allow cyclists to use the southboard, bare for tweet allow cyclists to use the southboard, bare for tweet allow produce speeds which would enhance cyclist safety greatly. 	 Slower territoxistic operation prough the Country totle Drive internation along with a more directions of eight lise systems will greatly onlytece safets. 	 Bower vehicular operation finough the Country who Drive mensection along with a more deaching of each to cyclobic ed geody emission satisfy.
	buli Cathrai Hentoge Reservois ond Landerapee	Preserve Collural Hertoge Features	 National interaction of the implying instance infanti comprised of enroed. Kongraphy, wellands, trend inlight, Krashed assoc, and rating agricultural tends. 	 Non-rel character of the inades y remains intact composed of varied hipography, waterda, insid rolgas, forestocknas, and rolgas, forestock casas, and rolgas, groutinal tards 	X Manual despises of the reaching remains much economical of workd topigraphy, wellands, based ridges, forwared areas, and rolling agricultural lands.	 Natural character of the control same related composed of used topography wellards, head ofges, treated areas, and colleging-related levels. 	 Requiris represented adjuster to moderny to be immoved to accommodate manufaces design in Enclosed design Enclosed en the TRCA londs 	 Natural characteristics adjacent to the mastway removes inject, compassed of vesied lopographo, wellands, freed of signs fisseduct areas, red collegi agricultural lends.
Cultural Environment	Lend Use	Minerials Kropicto te Existing Residential Recreational Proporties	 Re repacts to moderity/ developments planned in the Metrus Development netti et Lakieda Gaston Cente No espect to represional Golfies al Hoot Lake Cancervotion Area 	 No empacts to read-article developments graphed in the Metrus Development worth of Lakester Gardee Cente Would enhance access to the recreational Tackline al Heart Lake Gomervedon Also the docess 	 No repetts to mediential developments planned in the Metua Development north of Lokenske Gamer Centre 40 repatr to reconducted facilities of Heart Lake Conservation Area 	 Significant impacts to ptermed readered developments, and solaring commercial and necreational facilities. Would prevent active to site along the mouleky from the nexts. One way operation with spectral black trees would result in large impacts to ptermed reactive all evulpances, and excelling conservations and microalized facilities. Would request which leaving the properties using the most wy to have i much further to ge explored and the most weak to have i much further leaving the properties using the most wy to have i much further to ge explored. 	 No reports to reactivity developments planned to the Versia Divolopment north of Lakosida Garden Clerins No reports or remestantial bolitas at Heart Laks Conservation Area 	 No impacts to readering developments guessed in the Notice Development rective Casheodo Gartier Cartier No impact to recreational faultion at Heart Late Conservation Area
Social and Cultura	Economi Economia	Accommodate Paywed Development and Grawth	 No report to planned industrial verplayment playation verplayment development. Newdorital development within the Country-aim Wagne Secondary Plan axes 	 No impact to prevent industry-employment development, residential development, residential development when the Costry-bide Wilages Secondary Plan area 	•* No impact to planned industrial/employment development, Provide School development, residential development within free Countrystelle Villagen Sixcondary Plan area.	 Significant impacts to planned insidential developments, and exciting commercial and recruitional facilities. Would present access to site along the roactivity from the vorts. Would increase the datasets vehicles accessing the contdox would have to travel. One way operation with separated bike lense vesselt result in large impacts to planned insidential developments, and existing commercial and recruitional facilities. Would require vehicles having the properties along the machinal developments and existing commercial and recruitional facilities. Would require vehicles having the properties along the machinal developments which a prevention of the contour vehicles for distance vehicles accessing the contour yould have to travel. 	 Insproved connections between the east and well adapt of the studies for plenned antisetial is any dopment doe slopment Private School doe slopment resolucial development within the Coormology Plan area 	 Improved connections between the assid and aveal soles of the readway for phorned industrial (imployment industrial) employment fiction/ decolopment, readerinal development within the Countryside Villaget Secondary Plan area
mont	Designated Notical Areas	Memora Impactato Designated Natural Anse	 No expects to designized, rational areas 	 No reports to designated: metaod areas. 	A fire impacts to designable reducid areas.	 No reparts to designated natural assess 	 Imparts to lends associated adv the Heart Lake Comentation Area 	 Minor impact to handa adjusted to the intersection of Countryade Drived Heart Lake Rd
Environment	W68/le and Tenedal/ Histoly/	Minimiza Impacta to Web/w	 No reports to alighter 	 Ni spaca to aldela. 	✓ No reparts to width.	< No report to width	< No espects to width anticeated	 No reports to widths anticipated.
Natural	Vegetation	Meurige Impacts to Vegetation	 No mando to separation. 	 So impacts to sepristion. 	 No reparts to reprinter. 	 No reparts to separation. 	 Impacts to vegetation, change to Right of Way at Heart Lake Rd 	 No impacts to vegetation moderate change to Fight of Visity off Countriesde Dr and Haurt Lake Road.


EVALUATION OF WILDLIFE MITIGATION ALTERNATIVES

The Function and Design Review of the Heart Lake Road Corridor **IMPLEMENTED MEASURES TO MITIGATE SPEED AND WILDLFE MORTALITY**

SOUTH OF COUNTRYSIDE DRIVE

NORTH OF SANDALWOOD PARKWAY



PREFERED ALTERNATIVES

Timeframe	meframe Recommended Preferred Solutions			
Short-Term (0-2 years)	 Wildlife Mortality Mitigation: Maintain existing solar powered flashing amber lights Maintain and re-paint optical speed bars Install (2) additional eco-passages tunnels Install wildlife directional fencing Implement turtle nesting mounds Traffic Calming: Re-classify road as a local collector road Lower speed limit to 50 km/h Implement speed cushions between Mayfield Rd and the Hwy 410 SB off-ramp Traffic circle at conservation entrance Transportation Improvement: Implement a hybrid multi-use trail through Heart Lake Conservation Area with connections to the existing boulevard path at Heart Lake Rd/Countryside Drive 			
Ultimate	 Lane narrowing on Heart Lake Road Roundabout at Countryside Drive Traffic circles at future major development accesses to Heart Lake Road Implement <u>Alternative C</u> with separated bike lanes 			

Ultimate | Southbound View – 250m South of Countryside Drive

Ultimate | Southbound View – Access to Heart Lake Conservation Area

FUNCTION AND DESIGN REVIEW OF THE HEART LAKE ROAD CORRIDOR

Appendix B Agency Correspondence November 1, 2019

APPENDIX B

Agency Correspondence

To:	File	From:	D.Addley and B.Orr
File:	165001037	Date:	November 29, 2019

Reference: Final Report – Function and Design Review of the Heart Lake Road Corridor Feasibility Study Sandalwood Parkway East to Mayfield Road Etobicoke Creek Watershed; City of Brampton; Regional Municipality of Peel

The attached has been prepared in response to the comments received from the Toronto Region Conservation Authority via letter dated March 28, 2019.

Attachment: Comment/Response Table

c. Nelson Cadete, City of Brampton

Comment and Response Table

Item	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
1	It is staff understanding that the purpose of a feasibility study is to determine whether a project should move forward through an EA process or should be completely abandoned altogether. However, it appears that this study is not evaluating the feasibility of the proposed works, rather it is moving through the process of alternatives evaluation and selection as an EA study would. As such, please clarify why the project is not currently proceeding through an EA process instead.	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long- term (i.e. within 5 to 10 years). Proposed long-term measures include intersection improvements at Countryside Drive and Heart Lake Road, and active transportation along Heart Lake Road.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
2	To reiterate recommendations made within the Project Overview section of this letter, staff recommends that a comprehensive EA study be initiated for parts of the project that may require encroachments or impact on adjacent natural features and TRCA lands. These parts of the project include but are not limited to implementation of traffic circles, roundabouts, and trail and road upgrades for active transportation. As such, some of the identified short-term solutions, including a traffic circle at HLCA entrance and a hybrid multi-use trail (MUT) through HLCA, should not move forward without undergoing an EA process first. Please clearly identify the parts of the project that will proceed through an EA process, post feasibility study. Please also revise the Preferred Alternatives table so that the above named traffic circle and MUT are not implemented in the short-term prior to undergoing an EA process.	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long- term (i.e. within 5 to 10 years). Proposed long-term measures include intersection improvements at Countryside Drive and Heart Lake Road, and active transportation along Heart Lake Road.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
3	For all of the alternative evaluation tables (transportation, traffic calming and wildlife mortality mitigation), please clarify how each alternative is ranked and scored. For example, if each of the three ranking symbols were given a numeric value instead, then Alternative E appears to score higher than the preferred Alternative C for the ultimate transportation alternative. It is not clear how all of the alternative D was identified to have two categories that were ranked as fail. Please explain and review the ranking and scoring for all alternatives ranking and scoring process to consider the cumulative impacts of each alternative to the natural system, and to select an alternative with the least environmental impact. Please	It appears that the total equal score of 17 has been removed from Table 24 Evaluation of Transportation Alternatives. It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long-term (i.e. within 5 to 10 years), including active transportation along Heart Lake Road.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.

Item	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
	also see below for more comments regarding ranking and		•
	scoring of specific alternatives.		
Trans	portation Alternatives		
4	Staff notes that both short-term and ultimate preferred alternatives have been selected for active transportation and traffic calming. Particularly for active transportation, staff is concerned with the selection of both a short-term MUT route through HLCA and ultimate bike lanes along Heart Lake Road, as this not only creates a redundancy in the cycling network, but will also double the impact on the surrounding natural system. Staff requests that only one solution be selected to provide one active transportation route through the area. The route that is selected should be evaluated to have the least impact on the surrounding natural features. In addition, considering the potential degree of impact on highly sensitive natural features in the area, staff further requests that an active transportation route not be selected in the short-term without undergoing an EA process. Further consultation with the Ministry of Environment, Conservation and Parks (MOECP) may be required to confirm direction, notwithstanding TRCA staff recognizes that this particular project will follow the Municipal Class Environmental	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long- term (i.e. within 5 to 10 years), including active transportation along Heart Lake Road.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
5	Assessment (MCEA) process. Staff recommends that implementation of bicycle lanes along alternative parallel roads that would have fewer impacts to sensitive natural features also be considered as a separate alternative. These parallel roads may include Kennedy Road or Dixie Road. It is understood that cycling access into HLCA may still be achieved from these parallel roads via planned active transportation routes along Mayfield Road and Sandalwood Parkway.	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long- term (i.e. within 5 to 10 years), including active transportation along Heart Lake Road.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
6	Staff notes that both short-term and ultimate preferred alternatives have been selected for active transportation and traffic calming. Particularly for active transportation, staff is concerned with the selection of both a short-term MUT route through HLCA and ultimate bike lanes along Heart Lake Road, as this not only creates a redundancy in the cycling network, but will also double the impact on the surrounding natural system. Staff requests that only one solution be selected to provide one active transportation route through the area. The route that is selected should be evaluated to have the least impact on the surrounding	Not addressed. Staff continues to have concerns regarding the duplication of cycling alignments (i.e. implementation of both a MUT within HLCA and bike lanes along Heart Lake Road) within an area with highly sensitive natural features. Staff also understands that a EA study is proposed for active transportation along Heart Lake Road, but not the MUT through HLCA. It is staff expectation that the requirement for a redundant cycling route will be examined within this future EA study. Please continue to consult with TRCA staff at the EA stage.	Noted. The City will continue to engage with TRCA as part of subsequent planning and design activities.

ltem	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
	natural features. In addition, considering the potential degree of impact on highly sensitive natural features in the area, staff further requests that an active transportation route not be selected in the short-term without undergoing an EA process. Further consultation with the Ministry of Environment, Conservation and Parks (MOECP) may be required to confirm direction, notwithstanding TRCA staff recognizes that this particular project will follow the Municipal Class Environmental Assessment (MCEA) process.		
7	Staff notes that the lane and road widths identified within the conceptual cross-sections in the TAC materials and PIC2 display boards differ from one another. For example, vehicular lane widths for Alternatives B to G are identified to be 3.3 m wide in the PIC2 boards, but 3.0 m wide in the TAC materials. Please check all bicycle, buffer, road embankment and vehicular lane widths to ensure that the correct widths are identified on all materials. Please clarify what the correct widths are for each alternative. Once the correct widths have been established, please re-evaluate the alternatives ranking and scoring.	Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
8	It is not clear if any technical studies to characterize the existing baseline conditions of the natural features surrounding Heart Lake Road and HLCA have been completed, as none have been provided to TRCA staff so far for review: a. The conceptual cross-sections of the various alternatives do not adequately quantify the degree of impacts to adjacent natural features. Due to the proximity of sensitive natural features, all transportation alternatives should include a cross-section of the actual Heart Lake Road and adjacent features, with an overlay of the alternative footprint in order to better understand and evaluate the impact and encroachment of each alternative on the adjacent natural features. b. Please clarify if the existing 2.0 m grey areas beside the 3.5 m vehicular lanes in Alternative A (Do Nothing) represent a paved shoulder, unpaved (gravel) shoulder, or vegetated area or ditch. This baseline condition information is required to adequately evaluate the impact of the other alternatives on existing conditions. If the	 a. Not addressed. Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage. In addition, it is unclear how Figure 49 reflects the various alternatives carried forward in Table 20, considering that bike lanes are being proposed. It appears that true impacts to the adjacent features are not accurately shown within the cross-sections. Please clarify at future EA stage. b. Not addressed. Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage. In particular, the cross-sections and figures appear to be conceptual, and do not appear to accurately depict impacts to adjacent natural features due to required grading. Please ensure that all impacts are considered at the EA stage. c. Not addressed. Staff understands that no EA study is proposed for the implementation of a hybrid MUT through HLCA. It is staff expectation 	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.

ltem	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
	 existing 2.0 m areas are vegetated under existing conditions, then it is still possible for impacts to Designated Natural Areas to occur even if the proposed alternative remains within the Right of Way. Staff notes that Alternatives B to E and G all indicate that "work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas". If the 2.0 m areas adjacent to the current 3.5 m vehicular lanes are vegetated, then please revise the text, rank and score of the above alternatives to more accurately reflect the impact on adjacent natural features. c. The natural areas within the northern section of HLCA consist of a number of PSWs within an undulating landscape. This heterogenic landscape may create complications and challenges during the construction of infrastructure. This landscape does not appear to be adequately characterized, and construction challenges do not appear to be considered in the alternatives evaluation process. Staff recommends that temporary construction impacts to PSWs and challenges also be considered and incorporated into the alternatives evaluation, particularly for Alternative F (Hybrid MUT in HLCA). Upon consideration, please revise the Designated Natural Areas text, rank and score for Alternative F accordingly. 	that construction impacts to natural features will be evaluated, avoided, minimized, mitigated and compensated in future detailed design stages of the project.	
9.	Staff has concerns regarding the implications of an all- season MUT through HLCA. Please clarify if this MUT will require salt or sand for winter maintenance. Due to the highly sensitive nature of the features, inputs of salt and sand may create long-term cumulative negative impacts to features within HLCA. If required, please also revise the text, rank and score for Alternative F accordingly.	Not addressed. Table 24 Evaluation of Transportation Alternatives indicates that "no salt of fluids originating from vehicles and salt distributing vehicles affect the existing trail/ old access road entrance". However, please address original comment and clarify if salt for winter maintenance is required for a future all-season MUT. It is staff expectation that salt and sand impacts to natural features will be evaluated in future detailed design stages of the project.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
10	As there are sensitive natural features located around Heart Lake Road and within HLCA, the preferred alternative will need to maintain the runoff volume that is discharged into the features under the proposed conditions. Any increase in impervious area should be	Please continue to consult with TRCA staff to address this comment at the EA stage of this project. As articulated in our previous comment, staff has concerns that property/ space requirements needed to meet stormwater	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the

Item	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
	minimized to the extent possible. Low Impact Development (LID) measures can be implemented to deal with additional runoff volume as a result of increased imperviousness. The preferred ultimate solution (Alternative C) has been identified to result in additional impervious area through the paving of the existing un- paved shoulder. The required MUT connections and upgrades required for the short-term solution (Alternative F) will also result in additional impervious area, which should be documented and considered in the alternatives evaluation table. Space requirements and the type of LID measures should also be considered and depicted within the alternative road cross-sections for alternatives that will result in additional impervious area. Please refer to the Low Impact Development Stormwater Management Planning and Design Guide (2010) for further information.	 management criteria will encroach and result in impacts to adjacent natural features. At the EA stage, please also incorporate impacts to the Aquatic Habitat, in addition to Terrestrial Habitat, into the evaluation within the Natural Environment Category. Please note that increased paving and total impervious area will increase flows and impacts to the adjacent wetlands. 	Municipal Class EA process, in consultation with TRCA.
11	Please note that different stormwater management options will need to be explored at the next planning process to achieve TRCA's water quantity, quality and water balance criteria. Please refer to the TRCA Stormwater Management Criteria (2012) for further information.	Please continue to consult with TRCA staff to address this comment at the EA stage of this project.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
12	 Calming Alternatives Staff notes that a roundabout at Countryside Drive is proposed as an ultimate solution. There are two alternative options for a roundabout at Countryside Drive. Alternative E appears to have impacts to adjacent PSWs, ANSI and TRCA lands on the west side of Heart Lake Road. Alternative F appears to only have impacts on lands located north east of the intersection of Heart Lake Road and Countryside Drive. Please clarify which alternative has been selected as the preferred as both will have different impacts on adjacent lands. Please also clarify if the footprint of Alternative F will only impact the north east corner of the intersection, and remain outside of wetland areas and TRCA lands. Please note that PSWs are located on the west side of Heart Lake Road, and at the south east corner of the intersection of Heart Lake Road, and at the south east corner of the intersection of Heart Lake Road and Countryside Drive. 	Addressed. It is staff understanding that Alternative F is selected as the long-term solution at the Heart Lake Road and Countryside Drive intersection. Staff also understands further EA study will be undertaken for intersection alternatives at this location. Please address this comment at the EA stage, and clarify if bike lanes are included within the roundabout. If bike lanes are included within the roundabout, additional impacts to adjacent natural features is likely. Please also refer to Comment #8 above regarding grading limits and true impacts to adjacent natural features.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
13	Further to Comment #12 above, please clarify why other alternatives are not being considered in addition to the roundabout options for the intersection at Countryside	Not addressed. Staff understands further EA study will be undertaken for intersection alternatives at this location. Please address at EA stage.	Noted. Subsequent planning and design for transportation modifications within the study

Item	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
	Drive, such as a signalized T-intersection. Other intersection alternatives may be able to better avoid impacts to the adjacent PSW and TRCA lands than a roundabout. Please also present other intersection alternatives in addition to the roundabout options.		area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
14 Wildlin	Staff notes that cyclist safety for the traffic circle and roundabout alternatives (Alternatives B, E and F) was identified to be improved due to reduced vehicular speed limits. However, the conceptual image of a roundabout in the PIC2 display boards show that cyclists will have to transition from a separated bicycle lane and merge into vehicular traffic at the roundabouts and traffic circles. It is staff opinion that the shared roadway at the roundabouts and traffic circles, in addition to the need for users (both vehicular and cycling) to transition from separate to shared facilities, and the required turning movements (cars will be turning toward and into cycling traffic when turning into roundabouts and traffic circles) are safety concerns for cyclists. Please re-evaluate the safety of roundabouts and traffic circles for cyclists and revise the alternatives ranking and scoring accordingly.	Not addressed. Staff understands further EA study will be undertaken for intersection alternatives at this location. Please address at EA stage.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
15	Please rename the title of the alternatives evaluation table from "wildlife mitigation" to "wildlife mortality mitigation", as it is their mortality that is being mitigated by the proposed measures and not the wildlife itself. Please also revise any other references to "wildlife mitigation" accordingly as well.	Not addressed. "Wildlife mitigation" still referenced throughout text.	The text of the final report has been updated accordingly.
16		There appears to be a lack of discussion and design regarding the wildlife directional fencing that would be required to support the proposed dedicated wildlife crossings/ eco-passages in the Final Report. Please note that the directional fencing is critical to the success of the eco-passages. Please continue to consult with TRCA staff at the design stage of the eco-passages and wildlife directional fencing. Options to work with TRCA staff (as a fee for service) to assess mitigation and to monitor the measures are available as well.	Noted. The City will continue to consult with TRCA staff during the design stage of these features.
17		Staff notes that the Final Report does not contain any information regarding post project monitoring to assess the effectiveness of wildlife mortality mitigation measures, similar to what TRCA staff is currently undertaking for the eco-passage installed by the City of Brampton at Heart	Noted. The City will continue to consult with TRCA staff during the design stage of these features.

ltem	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
		Lake Road, just south of Countryside Drive. Please note that there are lessons that can be learned from the monitoring of this eco-passage that can benefit future eco- passage and directional fencing measures in the area. Please include post project monitoring of measures at the future design stage, and continue to consult with TRCA staff.	
18		The Final Report indicates that temporary wildlife fencing was installed in 2018, and that additional areas for fencing are recommended in the future. At future design stages, please identify these areas on a map and clarify if they are linked to current of future eco-passages.	Noted. The City will continue to consult with TRCA staff during the design stage of these features. Areas recommended for fencing will be mapped. Further, any links to current or future eco- passages will be noted.
	Lake Conservation Area Multi-Use Trail	-	
19		Staff understands that a hybrid MUT through HLCA is proposed as a short-term measure in lieu of an EA study. Staff acknowledges that a MUT through HLCA would be compliant with the direction of the HLCA Master Plan and TRCA Trail Strategy. Please continue to consult and work closely with TRCA staff on the planning and design of this MUT.	Noted. The City will continue to consult with TRCA staff during the planning and design stage of these features.
20		Please note that the HLCA Master Plan was approved by TRCA in 2006, which included a trail plan for the property. In 2017, TRCA staff completed a review of the HLCA trail system operations to address trail use, alignments, signage and other operational considerations. Trail projects have continued to be implemented between 2006 and 2018. Please contact TRCA for more information regarding the HLCA Master Plan.	Noted. The City will contact TRCA with respect to the HLCA Master Plan.
21		In the current draft TRCA Trail Strategy, TRCA staff has identified the Esker Lake Trail, which passes north-south through HLCA, as a trail of regional significance. As such, local trail and active transportation corridor connection opportunities should be planned and accommodated in this infrastructure improvement project in coordination with the Regional Municipality of Peel, the City of Brampton, the Town of Caledon and TRCA.	Noted. Future project planning will consider local and regional connection opportunities.
22		Winter operational requirements and responsibilities including trail maintenance and management needs to be considered at the planning stages of the proposed MUT through HLCA, particularly during the off-season when	Noted. The City will continue to consult with TRCA staff during subsequent planning and design stages.

Item	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
23		HLCA is officially closed from mid-October to late April. Further discussions between TRCA and City of Brampton staff are required to discuss these operational requirements and to develop necessary agreements Please note that timing of construction of any improvements should be scheduled when HLCA is closed or at times of low visitation to avoid impacts to the operation of the conservation area. Please ensure that this is coordinated with TRCA staff.	Noted. Construction activities will be timed in consultation and coordination with TRCA staff.
24		The short-term budget on page 7.5 of the Final Report does not include costs for improvements to the trail system at HLCA to accommodate the recommended MUT. These costs should include planning, detailed design, construction and post-construction monitoring costs. Please revise the budget accordingly.	A Class D cost estimate including planning, detailed design, and construction has been included in Section 7 of the report, as well as in Appendix H.
	Lake Conservation Area Traffic Circle		
25		Please note that there are often long lines of vehicles waiting to pay admission fees at the front gate of HLCA that extend onto Heart Lake Road and occasionally onto Sandalwood Parkway at peak times during HLCA's operating season. TRCA staff has concerns about the flow of traffic with the traffic circle being recommended as the only vehicular access to HLCA. Staff notes that Table 25 of the Final Report does not appear to identify any advantages of Option 2B (mini roundabout at HLCA) over Option 2C (speed cushions, lane narrowing with rumble strips). Option 2C may be more appropriate given the peak traffic flows at HLCA. Please continue to consult with TRCA staff on the appropriateness of a traffic circle at this location at the detailed design and permitting stages of this project. It is understood that the project design within the Feasibility Study Final Report may need to change at the design and permitting stage in order to fully address TRCA staff concerns regarding both the traffic circle into HLCA, as well as footprint and encroachment issues and impacts into the adjacent Natural Heritage System.	Noted. Subsequent planning and design for transportation modifications within the study area will be completed in accordance with the Municipal Class EA process, in consultation with TRCA.
26		It is staff preference for there to be no encroachment onto TRCA lands to accommodate traffic circles due to highly sensitive natural features in the area. Please continue to	Noted. Subsequent planning and design for transportation modifications within the study
		consult with TRCA staff at design stages to ensure that TRCA lands are avoided.	area will be completed in accordance with the

ltem	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
			Municipal Class EA process, in consultation with TRCA.
27	volonmente	Please clarify if the costs for the traffic circle at the entrance of HLCA identified on page 7.5 of the Final Report including land securement and compensation costs.	The costs do not include land securement and compensation costs. More detailed cost estimates will be provided as part of subsequent planning for the preferred solution/design.
28	velopments	Increased pedestrian traffic into HLCA is expected due	Noted.
		to the new residential development on the east side of Heart Lake Road. Please note that the planning and design of Heart Lake Road will need to incorporate safe pedestrian access into HLCA that should be separated from the main entrance to avoid pedestrian and vehicular interactions.	Noteu.
29		Please clarify how new developments along Heart Lake Road will not increase use and traffic along Heart Lake Road, according to the results of the traffic modelling within the Final Report.	Section 3.1.2 identifies the forecasted future conditions along the corridor based on the City's land use forecasts. In this section we have identified a modest increase in Peak hour volumes along Heart Lake Road as summarized in Table 6. The volumes were obtained from the City's Regional Travel Demand Model which integrate with the land use forecasts. Most of the growth will occur north of Countryside Road or on the east side of Highway 410 which would have a more desirable north-south regional corridor via Dixie, as well as Highway 410 connections from Mayfield rather than proceeding to Sandalwood via Heart Lake Road. For the increases on Heart Lake Road these are explained by

ltem	TRCA Comments (September 11, 2018)	TRCA Comments (March 28, 2019)	Response
			a portion of traffic that uses
			Countryside Drive to proceed
			east-west on Sandalwood
			and Bovaird. With the advent
			of traffic calming measures
			Heart Lake Road will become
			less desirable for these trips
			as well.

March 28, 2019

CFN 58700

BY E-MAIL ONLY (Nelson.Cadete@brampton.ca)

Nelson Cadete City of Brampton 2 Wellington Street West Brampton, ON L6Y 4R2

Dear Mr. Cadete:

Re: Final Report – Function and Design Review of the Heart Lake Road Corridor Feasibility Study, Sandalwood Parkway East to Mayfield Road Etobicoke Creek Watershed; City of Brampton; Regional Municipality of Peel

Toronto and Region Conservation Authority (TRCA) staff received the Final Report (dated February 2019) for the above named project on February 13, 2019.

PROJECT OVERVIEW

It is our understanding that the Heart Lake Road Corridor Feasibility Study involves the examination of the longterm infrastructure requirements along Heart Lake Road, from Sandalwood Parkway to Mayfield Road, to accommodate future transportation demand and adjacent land use development while preserving the unique environment and character of the road. It is further understood that opportunities for active transportation, traffic calming and wildlife mortality mitigation will be examined as a part of this study.

In general, we are supportive of the City's overall goal of building out the active transportation network, and reduction of wildlife road mortality through implementation of traffic calming and other mitigation measures. We are particularly supportive of traffic calming and wildlife mortality mitigation measures that do not entail additional disturbance beyond the existing Heart Lake Road footprint, including speed cushions, turtle nesting mounds, reduced speed limit and lane narrowing.

However, given the presence of the Heart Lake Provincially Significant Wetland (PSW) Complex and the Brampton Buried Esker Area of Natural and Scientific Interest (ANSI) along this stretch of Heart Lake Road, it is our opinion that any proposal that involves new, replacement or expanded infrastructure should be examined through a formal environmental assessment (EA) process. It is our understanding that a further EA study will not be conducted for measures that are being proposed for implementation in the short-term (i.e. within 2 years). Proposed short-term measures include wildlife mortality mitigation measures including the installation of two new eco-passages, traffic calming measures including a traffic circle at Heart Lake Conservation Area (HLCA), and active transportation improvements including a hybrid multi-use trail (MUT) through HLCA with connections to an existing path at Heart Lake Road and Countryside Road. However, it is our understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long-term (i.e. within 5 to 10 years). Proposed long-term measures include intersection improvements at Countryside Drive and Heart Lake Road, and active transportation along Heart Lake Road.

By copy of this letter to Tim Kocialek, we recommend that you work closely with City of Brampton engineering staff through the next stages of this project, and that you consult with us prior to the issuance of the Request for Proposal (RFP) for both the EA and detailed design work to ensure that our property and permitting issues can be addressed and are feasible.

PROJECT REVIEW

Although we are supportive in principle with the development of an active transportation network and measures to mitigate against wildlife mortality, we have some concerns related to the plans for the road which should be addressed within the future EA or in the pre-design stage. These concerns include:

- Impacts to the flow of traffic at the proposed traffic circle at the HLCA entrance. Please note that that there are often long lines of vehicles waiting to pay admission fees at the front gate of HLCA that extend onto Heart Lake Road and occasionally onto Sandalwood Parkway at peak times during HLCA's operating season. As such, a continuous flow of traffic around the proposed traffic circle at peak season may be impeded. This issue should be addressed at future planning stages of the project. Please see Comment #25 in **Appendix A** for further information.
- Impacts to the Natural Heritage System (NHS) does not appear to be adequately characterized and evaluated within the Final Report. Staff notes that the presented cross-sections within the Final Report do not appear to include additional disturbance to the NHS that will be required for grading for instance. Please see Comment #8 in **Appendix A** for further information.
- Future intersection configuration at Countryside Drive and Heart Lake Road. Staff understands that a EA study will be undertaken to look at intersection alternatives at this location. It is staff expectation that staff concerns including Comments #12, #13 and #14 in Appendix A will be addressed within the future EA study.

Please see **Appendix A** for detailed comments on the Final Report, and ensure that these are included in an appendix for future reference. Please continue to consult with TRCA staff regarding future EA studies and at detailed design for permit requirements under Ontario Regulation 166/06. Please note that TRCA staff previously provided comments on the Technical Advisory Committee (TAC) materials in a letter dated September 11, 2018. Staff notes that all appendices, including Appendix H Response of TRCA to PIC #2 and TAC #2, are missing from the Final Report.

Should you have any questions, please contact me at extension 5266 or at alister@trca.on.ca.

Regards,

Annette Lister Planner, Infrastructure Planning and Permits Development and Engineering Services

BY E-MAIL

CC:	
Brampton:	Tim Kocialek, Manager, Engineering (<u>tim.kocialek@brampton.ca</u>)
	John Fantin, Supervisor, Engineering CADD (john.fantin@brampton.ca)
MNRF:	Mark Heaton, Management Biologist (mark.heaton@ontario.ca)
TRCA:	Sharon Lingertat, Senior Planner, Infrastructure Planning and Permits
	Quentin Hanchard, Associate Director, Development Planning and Permits
	Victoria Kramkowski, Government and Community Relations Specialist, Peel Watersheds
	Vince D'Elia, Senior Project Manager, Etobicoke-Mimico Creek
	Doug Miller, Senior Manager, Conservation Parks
	Deanna Cheriton, Supervisor, Greenspace Conservation

APPENDIX A: TRCA COMMENTS

ITEM	TRCA COMMENTS ON TAC MATERIALS (September 11, 2018) * No proponent response to TRCA comments provided in Appendix H of the Final Report	TRCA COMMENTS (March 26, 2019)			
Enviro	onmental Assessment Study				
1.	It is staff understanding that the purpose of a feasibility study is to determine whether a project should move forward through an EA process or should be completely abandoned altogether. However, it appears that this study is not evaluating the feasibility of the proposed works, rather it is moving through the process of alternatives evaluation and selection as an EA study would. As such, please clarify why the project is not currently proceeding through an EA process instead.	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long-term (i.e. within 5 to 10 years). Proposed long- term measures include intersection improvements at Countryside Drive and Heart Lake Road, and active transportation along Heart Lake Road.			
2.	To reiterate recommendations made within the Project Overview section of this letter, staff recommends that a comprehensive EA study be initiated for parts of the project that may require encroachments or impact on adjacent natural features and TRCA lands. These parts of the project include but are not limited to implementation of traffic circles, roundabouts, and trail and road upgrades for active transportation. As such, some of the identified short-term solutions, including a traffic circle at HLCA entrance and a hybrid multi-use trail (MUT) through HLCA, should not move forward without undergoing an EA process first. Please clearly identify the parts of the project that will proceed through an EA process, post feasibility study. Please also revise the Preferred Alternatives table so that the above named traffic circle and MUT are not implemented in the short-term prior to undergoing an EA process.	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long-term (i.e. within 5 to 10 years). Proposed long- term measures include intersection improvements at Countryside Drive and Heart Lake Road, and active transportation along Heart Lake Road.			
3.	For all of the alternative evaluation tables (transportation, traffic calming and wildlife mortality mitigation), please clarify how each alternative is ranked and scored. For example, if each of the three ranking symbols were given a numeric value instead, then Alternative E appears to score higher than the preferred Alternative C for the ultimate transportation alternative. It is not clear how all of the alternatives are given an equal score of 17. It is also not clear why Alternative D was identified to have two categories that were ranked as fail. Please explain and review the ranking and scoring for all alternatives and tables. It is staff preference for the alternative to the natural system, and to select an alternative with the least environmental impact. Please also see below for more comments regarding ranking and scoring of specific alternatives.	It appears that the total equal score of 17 has been removed from Table 24 Evaluation of Transportation Alternatives. It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long-term (i.e. within 5 to 10 years), including active transportation along Heart Lake Road.			
Trans	Transportation Alternatives				
4.	Staff notes that Alternative A (Do Nothing) does not conform with the municipal transportation master plan vision. However, please note that TRCA staff had limited involvement in the City's 2015 Transportation Master Plan (TMP) Update, and were only provided the opportunity to	It is staff understanding that a Schedule C Class EA study is proposed for measures to be			

Toronto and Region Conservation Authority | 3

ITEM	TRCA COMMENTS ON TAC MATERIALS (September 11, 2018) * No proponent response to TRCA comments provided in Appendix H of the Final Report	TRCA COMMENTS (March 26, 2019)
	comment on the report when it was in its final stage of review. Therefore, staff did not have the opportunity to comment on development of active transportation facilities along Heart Lake Road at the TMP stage. In a letter response to the final 2015 TMP Update report dated October 29, 2015, staff has indicated that the locations of the active transportation facilities were difficult to identify due to the scale of the map and has noted that proposed active transportation facilities will need to meet TRCA's LCP.	implemented in the long-term (i.e. within 5 to 10 years), including active transportation along Heart Lake Road.
5.	Staff recommends that implementation of bicycle lanes along alternative parallel roads that would have fewer impacts to sensitive natural features also be considered as a separate alternative. These parallel roads may include Kennedy Road or Dixie Road. It is understood that cycling access into HLCA may still be achieved from these parallel roads via planned active transportation routes along Mayfield Road and Sandalwood Parkway.	It is staff understanding that a Schedule C Class EA study is proposed for measures to be implemented in the long-term (i.e. within 5 to 10 years), including active transportation along Heart Lake Road.
6.	Staff notes that both short-term and ultimate preferred alternatives have been selected for active transportation and traffic calming. Particularly for active transportation, staff is concerned with the selection of both a short-term MUT route through HLCA and ultimate bike lanes along Heart Lake Road, as this not only creates a redundancy in the cycling network, but will also double the impact on the surrounding natural system. Staff requests that only one solution be selected to provide one active transportation route through the area. The route that is selected should be evaluated to have the least impact on the surrounding natural features. In addition, considering the potential degree of impact on highly sensitive natural features in the area, staff further requests that an active transportation route not be selected in the short-term without undergoing an EA process. Further consultation with the Ministry of Environment, Conservation and Parks (MOECP) may be required to confirm direction, notwithstanding TRCA staff recognizes that this particular project will follow the Municipal Class Environmental Assessment (MCEA) process.	Not addressed. Staff continues to have concerns regarding the duplication of cycling alignments (i.e. implementation of both a MUT within HLCA and bike lanes along Heart Lake Road) within an area with highly sensitive natural features. Staff also understands that a EA study is proposed for active transportation along Heart Lake Road, but not the MUT through HLCA. It is staff expectation that the requirement for a redundant cycling route will be examined within this future EA study. Please continue to consult with TRCA staff at the EA stage.
7.	Staff notes that the lane and road widths identified within the conceptual cross-sections in the TAC materials and PIC2 display boards differ from one another. For example, vehicular lane widths for Alternatives B to G are identified to be 3.3 m wide in the PIC2 boards, but 3.0 m wide in the TAC materials. Please check all bicycle, buffer, road embankment and vehicular lane widths to ensure that the correct widths are identified on all materials. Please clarify what the correct widths are for each alternative. Once the correct widths have been established, please re-evaluate the alternatives ranking and scoring.	Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage.

ITEM	TRCA COMMENTS ON TAC MATERIALS (September 11, 2018) * No proponent response to TRCA comments provided in Appendix H of the Final Report	TRCA COMMENTS (March 26, 2019)
8.	It is not clear if any technical studies to characterize the existing baseline conditions of the natural features surrounding Heart Lake Road and HLCA have been completed, as none have been provided to TRCA staff so far for review: a. The conceptual cross-sections of the various alternatives do not adequately quantify the degree of impacts to adjacent natural features. Due to the proximity of sensitive natural features, all transportation alternatives should include a cross-section of the actual Heart Lake Road and adjacent features, with an overlay of the alternative footprint in order to better understand and evaluate the impact and encroachment of each alternative on the adjacent natural features. b. Please clarify if the existing 2.0 m grey areas beside the 3.5 m vehicular lanes in Alternative A (Do Nothing) represent a paved shoulder, unpaved (gravel) shoulder, or vegetated area or ditch. This baseline condition information is required to adequately evaluate the impact of the other alternatives on existing conditions. If the existing 2.0 m areas are vegetated under existing conditions, then it is still possible for impacts to Designated Natural Areas to occur even if the proposed alternative remains within the Right of Way. Staff notes that Alternatives B to E and G all indicate that "work will not occur outside of the Right of Way therefore no impact to Designated Natural Areas". If the 2.0 m areas adjacent to the current 3.5 m vehicular lanes are vegetated, then please revise the text, rank and score of the above alternatives to more accurately reflect the impact on adjacent natural features.	 a. Not addressed. Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage. In addition, it is unclear how Figure 49 reflects the various alternatives carried forward in Table 20, considering that bike lanes are being proposed. It appears that true impacts to the adjacent features are not accurately shown within the cross-sections. Please clarify at future EA stage. b. Not addressed. Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage. b. Not addressed. Staff understands further EA study will be undertaken for active transportation alternatives along Heart Lake Road. Please address at EA stage. In particular, the cross-sections and figures appear to be conceptual, and do not appear to accurately depict impacts to adjacent natural features due to required grading. Please ensure that all impacts are considered at the EA stage. c. Not addressed. Staff understands that no EA study is proposed for the implementation of a hybrid MUT through HLCA. It is staff expectation that construction impacts to natural features will be evaluated, avoided, minimized, mitigated and compensated in future detailed design stages of the project.
9.	Staff has concerns regarding the implications of an all-season MUT through HLCA. Please clarify	Not addressed. Table 24 Evaluation of

ITEM	TRCA COMMENTS ON TAC MATERIALS (September 11, 2018) * No proponent response to TRCA comments provided in Appendix H of the Final Report	TRCA COMMENTS (March 26, 2019)		
	if this MUT will require salt or sand for winter maintenance. Due to the highly sensitive nature of the features, inputs of salt and sand may create long-term cumulative negative impacts to features within HLCA. If required, please also revise the text, rank and score for Alternative F accordingly.	Transportation Alternatives indicates that "no salt of fluids originating from vehicles and salt distributing vehicles affect the existing trail/ old access road entrance". However, please address original comment and clarify if salt for winter maintenance is required for a future all-season MUT. It is staff expectation that salt and sand impacts to natural features will be evaluated in future detailed design stages of the project.		
10.	As there are sensitive natural features located around Heart Lake Road and within HLCA, the preferred alternative will need to maintain the runoff volume that is discharged into the features under the proposed conditions. Any increase in impervious area should be minimized to the extent possible. Low Impact Development (LID) measures can be implemented to deal with additional runoff volume as a result of increased imperviousness. The preferred ultimate solution (Alternative C) has been identified to result in additional impervious area through the paving of the existing un-paved shoulder. The required MUT connections and upgrades required for the short-term solution (Alternative F) will also result in additional impervious area, which should be documented and considered in the alternatives evaluation table. Space requirements and the type of LID measures should also be considered and depicted within the alternative road cross-sections for alternatives that will result in additional impervious area. Please refer to the Low Impact Development Stormwater Management Planning and Design Guide (2010) for further information.	Please continue to consult with TRCA staff to address this comment at the EA stage of this project. As articulated in our previous comment, staff has concerns that property/ space requirements needed to meet stormwater management criteria will encroach and result in impacts to adjacent natural features. At the EA stage, please also incorporate impacts to the Aquatic Habitat, in addition to Terrestrial Habitat, into the evaluation within the Natural Environment Category. Please note that increased paving and total impervious area will increase flows and impacts to the adjacent wetlands.		
11.	Please note that different stormwater management options will need to be explored at the next planning process to achieve TRCA's water quantity, quality and water balance criteria. Please refer to the TRCA <u>Stormwater Management Criteria</u> (2012) for further information.	Please continue to consult with TRCA staff to address this comment at the EA stage of this project.		
Traffic	Traffic Calming Alternatives			
12.	Staff notes that a roundabout at Countryside Drive is proposed as an ultimate solution. There are two alternative options for a roundabout at Countryside Drive. Alternative E appears to have	Addressed. It is staff understanding that Alternative F is selected as the		

ITEM	TRCA COMMENTS ON TAC MATERIALS (September 11, 2018) * No proponent response to TRCA comments provided in Appendix H of the Final Report	TRCA COMMENTS (March 26, 2019)
	impacts to adjacent PSWs, ANSI and TRCA lands on the west side of Heart Lake Road. Alternative F appears to only have impacts on lands located north east of the intersection of Heart Lake Road and Countryside Drive. Please clarify which alternative has been selected as the preferred as both will have different impacts on adjacent lands. Please also clarify if the footprint of Alternative F will only impact the north east corner of the intersection, and remain outside of wetland areas and TRCA lands. Please note that PSWs are located on the west side of Heart Lake Road, and at the south east corner of the intersection of Heart Lake Road and Countryside Drive.	long-term solution at the Heart Lake Road and Countryside Drive intersection. Staff also understands further EA study will be undertaken for intersection alternatives at this location. Please address this comment at the EA stage, and clarify if bike lanes are included within the roundabout. If bike lanes are included within the roundabout, additional impacts to adjacent natural features is likely. Please also refer to Comment #8 above regarding grading limits and true impacts to adjacent natural features.
13.	Further to Comment #12 above, please clarify why other alternatives are not being considered in addition to the roundabout options for the intersection at Countryside Drive, such as a signalized T-intersection. Other intersection alternatives may be able to better avoid impacts to the adjacent PSW and TRCA lands than a roundabout. Please also present other intersection alternatives in addition to the roundabout options.	Not addressed. Staff understands further EA study will be undertaken for intersection alternatives at this location. Please address at EA stage.
14.	Staff notes that cyclist safety for the traffic circle and roundabout alternatives (Alternatives B, E and F) was identified to be improved due to reduced vehicular speed limits. However, the conceptual image of a roundabout in the PIC2 display boards show that cyclists will have to transition from a separated bicycle lane and merge into vehicular traffic at the roundabouts and traffic circles. It is staff opinion that the shared roadway at the roundabouts and traffic circles, in addition to the need for users (both vehicular and cycling) to transition from separate to shared facilities, and the required turning movements (cars will be turning toward and into cycling traffic when turning into roundabouts and traffic circles) are safety concerns for cyclists. Please reevaluate the safety of roundabouts and traffic circles for cyclists and revise the alternatives ranking and scoring accordingly.	Not addressed. No response provided. Staff understands further EA study will be undertaken for roundabout implementation. Please address at EA stage.
Wildlif	e Mortality Mitigation Alternatives	
15.	Please rename the title of the alternatives evaluation table from "wildlife mitigation" to "wildlife mortality mitigation", as it is their mortality that is being mitigated by the proposed measures and not the wildlife itself. Please also revise any other references to "wildlife mitigation" accordingly as well.	Not addressed. "Wildlife mitigation" still referenced throughout text.

ITEM	NEW TRCA COMMENTS ON FINAL REPORT (March 26, 2019)	PROPONENT RESPONSE			
Wildlif	ildlife Mortality Mitigation Measures				
16.	There appears to be a lack of discussion and design regarding the wildlife directional fencing that would be required to support the proposed dedicated wildlife crossings/ eco-passages in the Final Report. Please note that the directional fencing is critical to the success of the eco-passages. Please continue to consult with TRCA staff at the design stage of the eco-passages and wildlife directional fencing. Options to work with TRCA staff (as a fee for service) to assess mitigation and to monitor the measures are available as well.				
17.	Staff notes that the Final Report does not contain any information regarding post project monitoring to assess the effectiveness of wildlife mortality mitigation measures, similar to what TRCA staff is currently undertaking for the eco- passage installed by the City of Brampton at Heart Lake Road, just south of Countryside Drive. Please note that there are lessons that can be learned from the monitoring of this eco-passage that can benefit future eco-passage and directional fencing measures in the area. Please include post project monitoring of measures at the future design stage, and continue to consult with TRCA staff.				
18.	The Final Report indicates that temporary wildlife fencing was installed in 2018, and that additional areas for fencing are recommended in the future. At future design stages, please identify these areas on a map and clarify if they are linked to current of future eco-passages.				
Heart	Lake Conservation Area Multi-Use Trail				
19.	Staff understands that a hybrid MUT through HLCA is proposed as a short-term measure in lieu of an EA study. Staff acknowledges that a MUT through HLCA would be compliant with the direction of the HLCA Master Plan and TRCA Trail Strategy. Please continue to consult and work closely with TRCA staff on the planning and design of this MUT.				
20.	Please note that the HLCA Master Plan was approved by TRCA in 2006, which included a trail plan for the property. In 2017, TRCA staff completed a review of the HLCA trail system operations to address trail use, alignments, signage and other operational considerations. Trail projects have continued to be implemented between 2006 and 2018. Please contact TRCA for more information regarding the HLCA Master Plan.				
21.	In the current draft TRCA Trail Strategy, TRCA staff has identified the Esker Lake Trail, which passes north-south through HLCA, as a trail of regional significance. As such, local trail and active transportation corridor connection opportunities should be planned and accommodated in this infrastructure improvement project in coordination with the Regional Municipality of Peel, the City of Brampton, the Town of Caledon and TRCA.				
22.	Winter operational requirements and responsibilities including trail maintenance and management needs to be considered at the planning stages of the proposed MUT through HLCA, particularly during the off-season when HLCA is officially closed from mid-October to late April. Further discussions between TRCA and City of Brampton staff are required to discuss these operational requirements and to develop necessary agreements				
23.	Please note that timing of construction of any improvements should be scheduled when HLCA is closed or at times of low visitation to avoid impacts to the operation of the conservation area. Please ensure that this is coordinated with TRCA staff.				
24.	The short-term budget on page 7.5 of the Final Report does not include costs for improvements to the trail system at HLCA to accommodate the recommended MUT. These costs should include planning, detailed design, construction and post-construction monitoring costs. Please revise the budget accordingly.				

ITEM	NEW TRCA COMMENTS ON FINAL REPORT (March 26, 2019)	PROPONENT RESPONSE
Heart	Lake Conservation Area Traffic Circle	
25.	Please note that there are often long lines of vehicles waiting to pay admission fees at the front gate of HLCA that extend onto Heart Lake Road and occasionally onto Sandalwood Parkway at peak times during HLCA's operating season. TRCA staff has concerns about the flow of traffic with the traffic circle being recommended as the only vehicular access to HLCA. Staff notes that Table 25 of the Final Report does not appear to identify any advantages of Option 2B (mini roundabout at HLCA) over Option 2C (speed cushions, lane narrowing with rumble strips). Option 2C may be more appropriate given the peak traffic flows at HLCA. Please continue to consult with TRCA staff on the appropriateness of a traffic circle at this location at the detailed design and permitting stages of this project. It is understood that the project design within the Feasibility Study Final Report may need to change at the design and permitting stage in order to fully address TRCA staff concerns regarding both the traffic circle into HLCA, as well as footprint and encroachment issues and impacts into the adjacent Natural Heritage System.	
26.	It is staff preference for there to be no encroachment onto TRCA lands to accommodate traffic circles due to highly sensitive natural features in the area. Please continue to consult with TRCA staff at design stages to ensure that TRCA lands are avoided.	
27.	Please clarify if the costs for the traffic circle at the entrance of HLCA identified on page 7.5 of the Final Report include land securement and compensation costs.	
New D	evelopments	
28.	Increased pedestrian traffic into HLCA is expected due to the new residential development on the east side of Heart Lake Road. Please note that the planning and design of Heart Lake Road will need to incorporate safe pedestrian access into HLCA that should be separated from the main entrance to avoid pedestrian and vehicular interactions.	
29.	Please clarify how new developments along Heart Lake Road will not increase use and traffic along Heart Lake Road, according to the results of the traffic modelling within the Final Report.	

Meeting Minutes

TAC Meeting #2

The Function and Design Review of the Heart Lake Road Corridor Stantec File 165001037

Date/Time:	May 3, 2018 / 1:00 PM	
Place:	City of Brampton 2 Wellington Street West, Brampton Boardroom 2E	n, ON
Next Meeting:		
Attendees:	Nelson Cadete Henrik Zbogar Ghaz Mohammed Katharine McCarter Leilani Lee-Yates Brennan Paul Doug Milles Stavroula Kassaris Mark Heaton Marc Dupuis-Desormeaux Leila Sotondeh Caroline Mugo Mario Goolsaarran Dayle Laing David Laing John Fautin Francois Tomeo Irene Hauzar	City of Brampton City of Brampton City of Brampton TRCA TRCA TRCA City of Brampton MNRF TRCA City of Brampton City of Brampton City of Brampton
Distribution:	Project Team	

Item:

Action:

PRESENTATION OF ALTERNATIVES AND EVALUATION

Stantec presented the development and evaluation of the three following categories of alternatives:

- Active transportation;
- Traffic calming;
- Wildlife mortality mitigation.

May 3, 2018 TAC Meeting #2 Page 2 of 4

Item:

Action:

Stantec

Stantec

REVIEW OF ALTERNATIVES UNDER CONSIDERATION

- A request was made to revisit the Terms of Reference regarding the cultural heritage components of the study. Document the findings that the cultural heritage assessment recommended for Heart Lake Road. In addition, the Terms of Reference also considers how pedestrians will be accommodated in this study and needs to be documented.
- 2. Lands adjacent to Heart Lake Road are planned for development. There is associated traffic impacts in which there is a need to reduce speed by implementing traffic measures such as roundabouts, traffic circles etc.

EVALUATION OF ALTERNATIVES

- 1. Provide details regarding how the options were ranked; how the preferred Stantec alternative was determined.
- Consider how the first vision (sustainability and the environment) outlined at the 2040 Vision for the City of Brampton can be applied to the Heart
 Stantec Lake Road study.
- 3. Include a discussion about the importance of the Brampton's ravines and valleylands as part of the discussion for the PIC.
- 4. Include the planned development called "Burnt Log" at the southeast corner of Countryside Drive and Heart Lake Road as part of the how connections to the Heart Lake Conservation Area need to be enhanced.
- 5. Lands north of Countryside include employment and industrial which will be tied into cultural heritage considerations.

PREFERRED ALTERNATIVE

- 1. Alternative C has been identified as the Preferred Alternative. Alternative C has no impact to drainage along Heart Lake Road. A future EA is recommended to help determine the environmental impacts for this alternative.
- 2. There are two ecopassages proposed along Heart Lake Road, which will require additional engineering to determine what structural elements are needed to support the roadway with the introduction of the ecopassages.

May 3, 2018 TAC Meeting #2 Page 3 of 4

Item:	Action:
 Short term solutions include changing the roadway designation to local collector roadway. The lane width of Heart Lake Road will be changed to 3 m, with a 1.5 m for a bike lane. 	
 Hybrid cross section of Heart Lake Road will be developed and circulated (combination of rural and urban road). Need to identify how much property will be required from developers. 	
 MTO has been part of the TAC and have been included on all materials. MTO has stated they will not be considering a partial interchange at Countryside. 	
The lane widths and suggested speed limits are shown as part of the evaluation of alternatives.	
 Countryside connections should include Heart Lake Road by using the existing route or the preferred route. Need to identify if there will be any additional roadwork that will be needed. 	Stantec
8. Develop a map that shows the improvements suggested within the entire corridor.	Stantec
9. Develop a cross section for Alternative C.	Stantec
10. Request for bore hole locations and report was made.	Stantec
11. Memo to be circulated to TAC members that describe the evaluation of alternatives.	Stantec
12. Suggestion for the inclusion of an interpretive plaque that discusses the cultural heritage aspect of Heart Lake Road be included where pedestrians and cyclists can access it.	
PIC #2	
13. Tentatively scheduled for Wednesday May 16, 6:30 PM to 8:30 PM at Loafer's Lane Recreation Centre, Room 1,30 Loafer's Lake Lane,	To confirm by City

Loafer's Lane Recreation Centre, Room 1,30 Loafer's Lake Lane, by City Brampton, ON.

May 3, 2018 TAC Meeting #2 Page 4 of 4

The meeting adjourned at 3:00 PM. The foregoing is considered to be a true and accurate record of all items discussed. If any discrepancies or inconsistencies are noted, please contact the writer immediately.

STANTEC CONSULTING LTD.

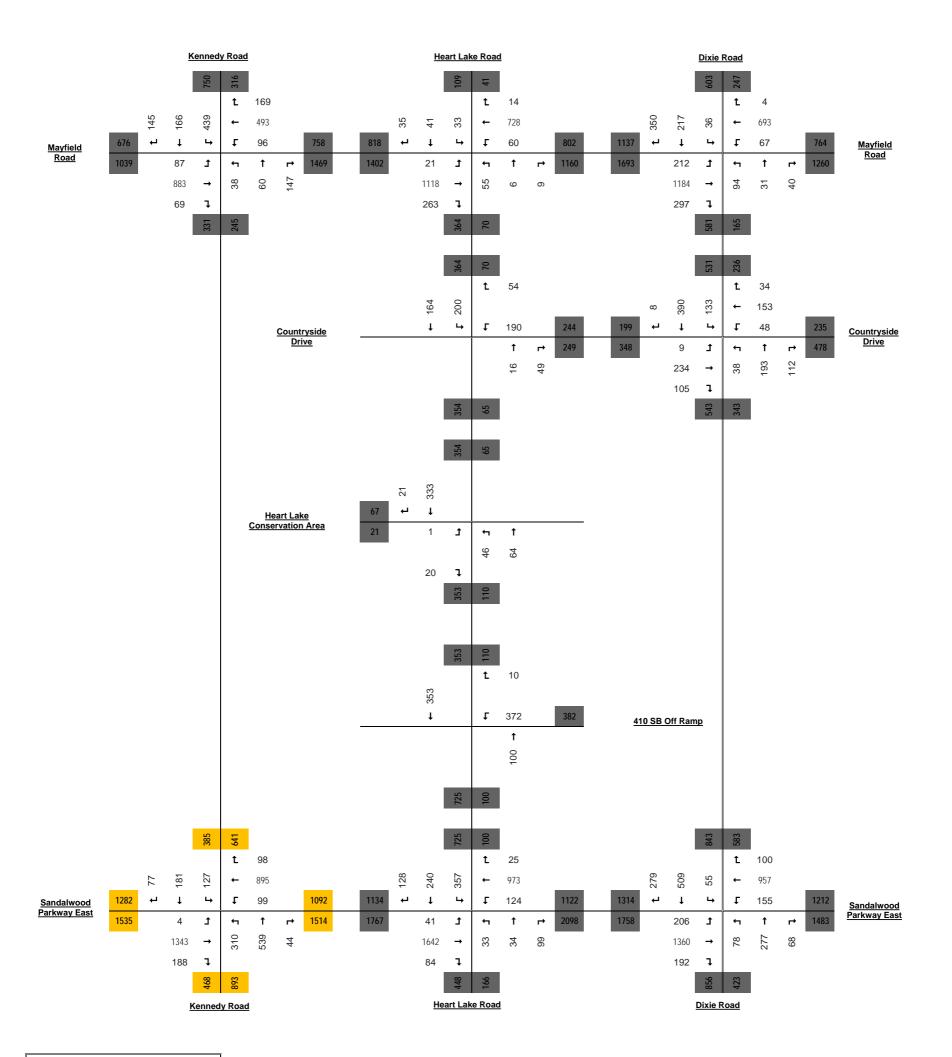
Irene Hauzar, MCIP, RPP, AICP Senior Environmental Planner Phone: (416) 507-3494 Irene.Hauzar@stantec.com

FUNCTION AND DESIGN REVIEW OF THE HEART LAKE ROAD CORRIDOR

Appendix C Turning Movement Counts November 1, 2019

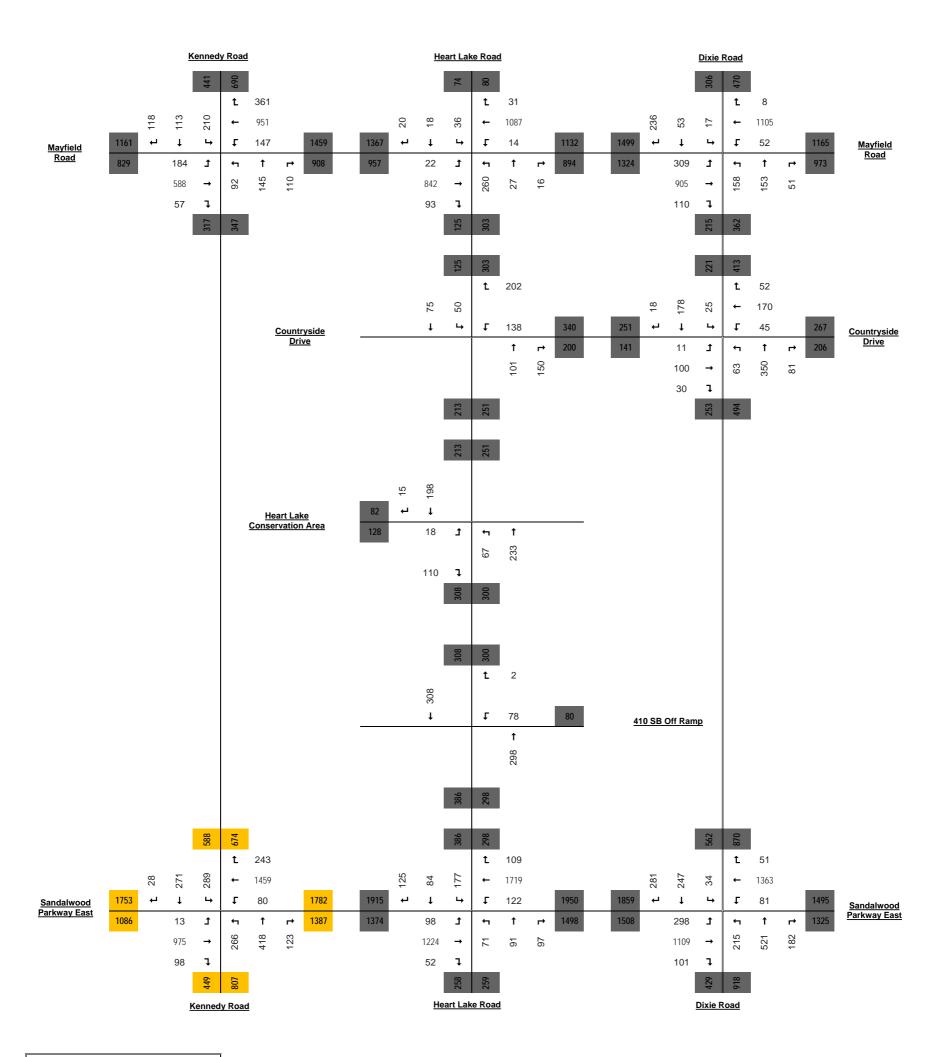
APPENDIX C

Turning Movement Counts



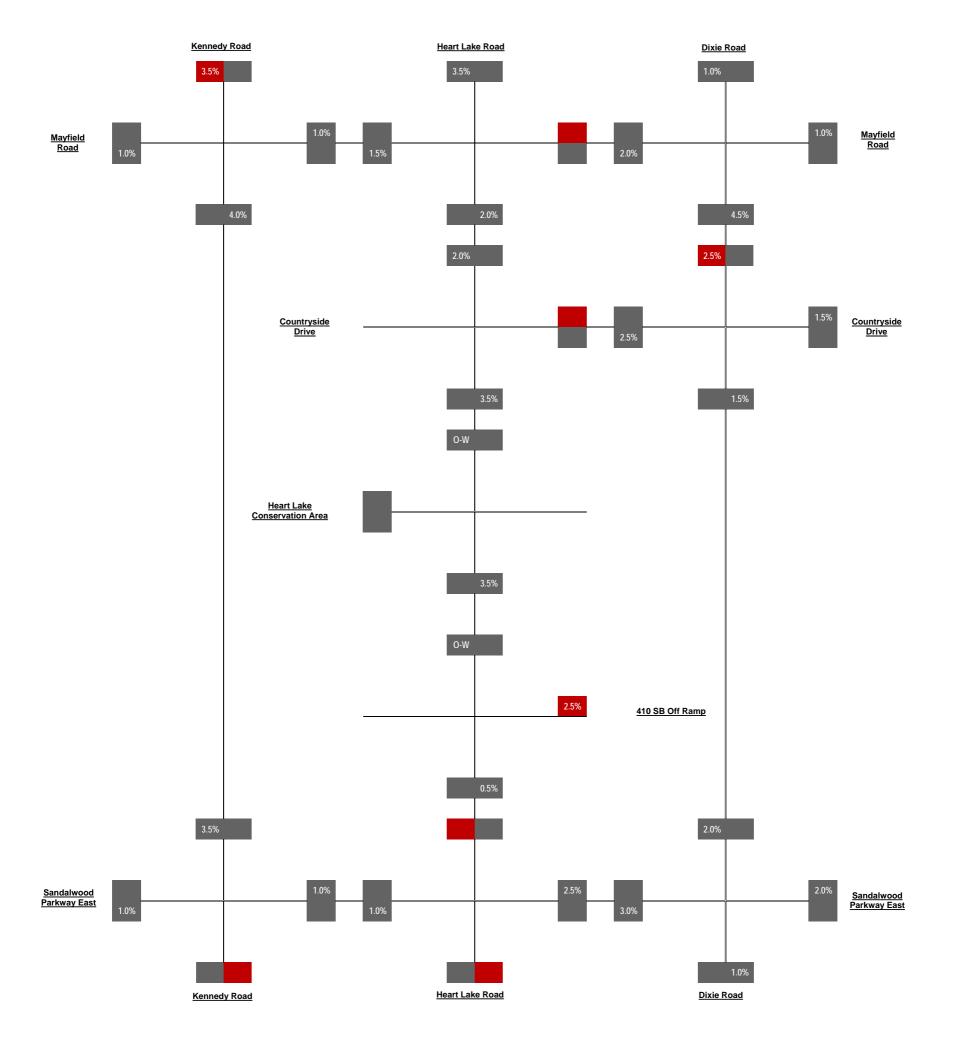
Signalized Interesections

0	10	Α
10	20	В
20	35	С
35	55	D
55	80	E
80	1000	F

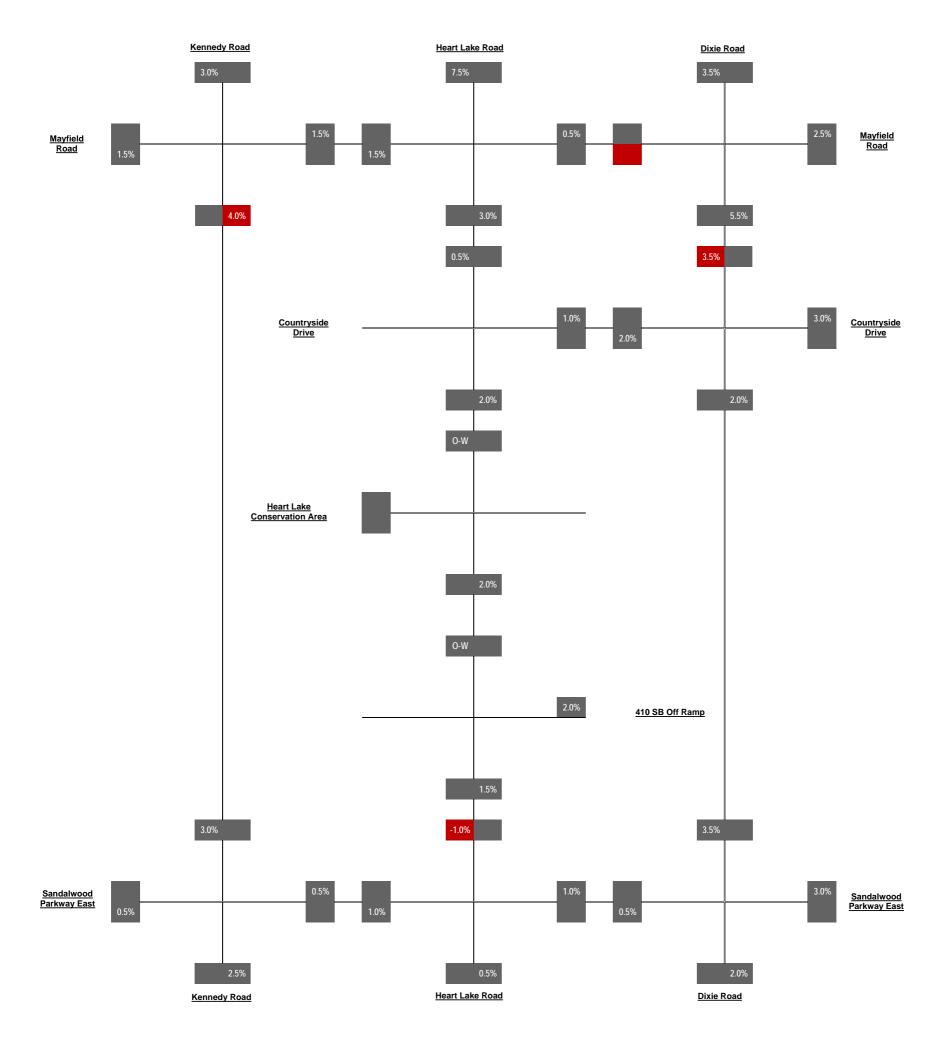

Heart Lake Road Turning Movement Count PEAK HOUR TRAFFIC VIOLUME LEVELS Vied1175-10101650/active11650010375 Technical Work3 Traffic Analysis(165001037_HeartLakeRd_Volumes_r2.xisqTum Table

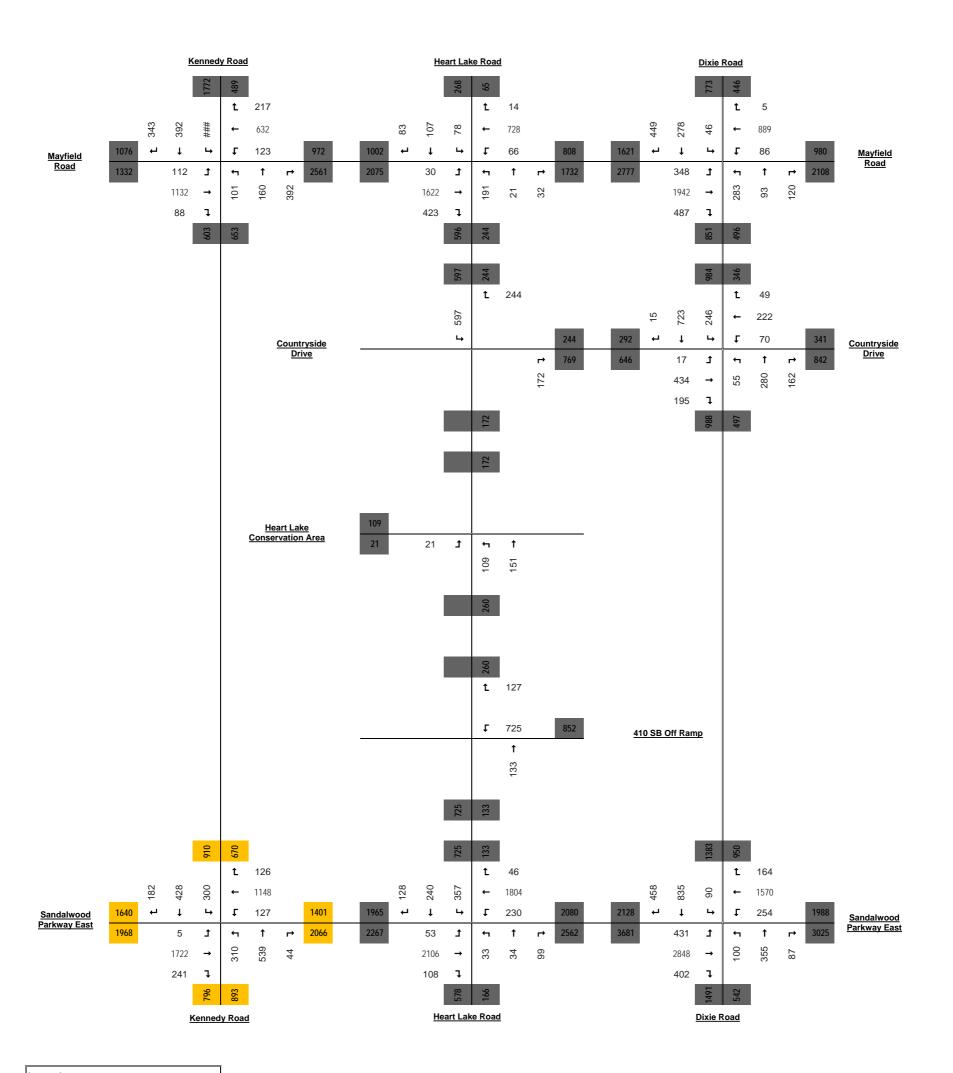
	Movement Index Movement EID PED Movement 1 2 3 4		AM Peak Hour (7:30-8:30 AM) Il Vehicles Total Vehicles Existing - Balanced Pedestrians Cyclists 7 8 9 10	Delay V/C Intersectio n V/C Heavy Ve % 11 12 13 14	icle Cars Trucks Total Vehicles · Total	PM Peak Hour (4:45-5:45 PM) Il Vehicles - Balanced Pedestrians Cyclists	Delay V/C Intersectio Heavy n LOS %	2041 Ann Vehicle AM Peak	ual Growth 2041 Total Growth PM Peak AM Peak PM Peak T 32 33 34	Forecast 2041 Alternative G (Without Improvements) 2041 AM Peak Hour otal Vehicles - Total Vehicles Change from Unbalanced - Balanced 2016 Delay V/C Intersect n LOS 35 36 37 38 39 40	2041 PM Peak Hour Total Vehicles -Total Vehicles Change from Unbalanced -Balanced 2016 N/C Interse n LC 41 42 43 44 45 66
101 1 Kennedy Rd @ Mayfield Rd	10107 NBL 101NBL 10108 NBR 101NBR 10104 NBR 101SBR 10104 SE 101SBR 10104 SEL 101SBR 10104 SEL 101SBL 10106 SBT 101SBT 10106 SBT 101SBR 10106 SBT 101EBL 10106 EBL 101EBL 10106 EBR 101EBR 10106 EBR 101EBR 10106 EBR 101EBR 10106 EBR 101WBR 10110 WEL 101WBL 10111 WBR 101WBR	37 1 54 6 143 4 429 10 164 2 133 12 75 12 848 35 61 8 93 3 442 51 156 13	38 38 60 60 147 147 439 439 166 166 145 145 87 87 883 833 69 69 96 96 493 493 166 169	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144 1 145 109 1 110 208 2 210 113 113 113 114 2 118 554 24 586 553 4 57 146 1 147 935 16 951 358 3 361	92 1 145 1 110 1 113 1 184 5 57 57 57 147 951 361	48.7 0.37 C 42.7 0.16 C 0.6 42 0.1 C 0.9 31.6 0.65 C 0.9 63.1 0.8 C 16 63.1 0.8 C 1.6 24.7 0.27 C 2.2 0.61 C 4.6 4.7	4.00% 9% 4.00% 1% 4.00% 5% 3.50% 3.50% 1.00% 1.00% 1.00% 8% 1.00% 8% 1.00% 8% 1.00%	4.00% 166.58% 166.58% 4.00% 166.58% 166.58% 4.00% 166.58% 166.58% 3.00% 158.32% 109.33% 3.00% 136.32% 109.33% 3.00% 136.32% 109.33% 3.00% 136.32% 109.33% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09% 1.50% 22.34% 45.09%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	245 246 153 1613.7 4.38 F 387 387 242 114.6 1.05 F 293 293 193 56.6 0.65 F 440 440 220 177.4 1.28 F 237 237 124 234.1 1.36 F 247 247 124 234.1 1.36 F 247 247 129 234.1 1.36 F 267 267 83 002.8 2.87 F 853 853 26 2.2 0.51 F 83 83 26 2.2 0.51 F 1380 1380 429 27.6 0.74 F 1380 139.0 429 27.6 0.74 F 1380 19.5 0.32 F 524 524 163 19.5 0.32 F
103 ennedy Rd @ Sandalwood Pkwy E	10000 NBL 100NBL 1002 NBT 100NBL 10030 NBT 100NBL 10030 NBT 100NBL 10030 NBT 100NBL 10030 SBT 100SBL 10030 SBR 100SBL 10030 EBT 102EBT 10030 EBT 102EBT 10030 EBT 102EBT 10030 EBT 102EBT 10130 WBL 102WBL 10131 WBL 102WBL	301 9 507 32 24 0 124 3 179 2 51 26 4 0 1132 11 179 9 98 1 877 18 91 7	310 310 539 539 24 44 127 127 181 77 77 77 4 4 188 188 99 99 895 895 98 99	44.8 0.72 D 3.00% 45.9 0.6 D 6.00% 45.9 0.6 D 1.00% 36.8 0.23 D 1.00% 36.8 0.23 D 3.00% 51.1 0.42 D 2.00% 51.5 0.28 D 3.00% 51.5 0.98 D 1.00% 61.5 0.98 D 1.00% 61.5 0.98 D 1.00% 22.9 0.54 D 2.00%	266 266 410 8 418 122 1 123 280 9 289 268 3 271 20 8 28 12 1 13 965 10 975 90 8 98	266 418 123 289 271 28 975 98 80 1459 243	44.8 0.72 D 45.9 0.6 D 2.0 45.9 0.6 D 1.0 38.8 0.23 D 1.0 38.8 0.23 D 1.0 36.8 0.20 D 2.0 51.1 0.42 D 3.0 38.8 0.23 D 1.0 51.5 0.96 D 6.0 51.5 0.96 D 8.0 45.9 0.69 D 2.0 45.9 0.69 D 2.0 45.9 0.69 D 2.0	0% 0% 0% 3.50% 0% 3.50% 0% 1.00% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00%	2.50% 85.39% 2.50% 85.39% 2.50% 85.39% 3.00% 156.32% 105.32% 109.33% 3.00% 136.32% 109.33% 109.33% 0.07% 136.32% 109.33% 109.33% 0.57% 22.44% 0.57% 22.44% 0.57% 22.44% 0.57% 22.44% 0.57% 22.44% 0.57% 22.44% 0.328% 0.57% 0.57% 22.24% 0.328% 0.57% 0.57% 22.24% 0.328% 0.328%	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	493 493 227 341.8 1.64 F 775 775 367 772.1 0.98 F 228 228 105 72.1 0.98 F 605 605 316 884.4 2.85 F 607 567 206 43.2 0.62 F 59 59 314 43.2 0.62 F 115 15 2 30.1 0.28 F 1104 1104 129 35.6 0.78 F 1111 111 3 35.6 0.78 F 1111 111 3 35.6 0.78 F 1111 111 3 30.3 0.54 F 1663 1653 194 77.8 1.06 F 275 27 32 77.8 1.06 F
104 Heart Lake Rd @ Mayfield Rd	10407 NBL 104/HEL 10408 NBR 104/HEL 10408 NBR 104/HEL 10408 NBR 104/HEL 10404 SE 104/SE 10404 SE 104/SE 10404 SE 104/SE 10405 SET 104/SE 10406 SET 104/SE 10407 EBL 104/EL 10408 EBT 104/EL 10408 EBT 104/ER 10408 EBT 104/ER 10409 VBT 104/WBT 10410 WBT 104/WBT 10411 WBT 104/WBT	98 5 12 18 33 77 42 1 200 1 4065 63 494 11 113 3 641 87	103 56 12 6 18 9 33 33 76 41 41 30 118 116 505 283 116 60 728 728	25.5 0.26 B 4.85% 23.4 0.02 B 8.85% 23.3 0.01 B 30.9 0.23 B 30.3 0.21 B 1.28% 30.9 0.23 B 28.7 0.62 B 4.76% 1.1 0.44 B 5.64% 4.1 0.44 B 5.64% 4.56% 4.56% 4.56% 6.1 0.26 B 1.45% 4.56% 4.56% 4.56%	273 4 277 28 28 28 15 1 16 33 38 26 26 1 27 21 1 27 21 76 843 15 6 843 15 76 843 103 6 103 1052 36 1067	280 27 16 36 18 20 20 22 22 842 93 93 14 1087	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0% 2.00% 2.00% 0% 2.00% 0% 3.50% 0% 3.50% 0% 3.50% 0% 1.50% 0% 1.50% 0% 1.50%	3.07% 64.05% 102.33% 3.07% 64.05% 102.33% 3.07% 64.05% 102.33% 5.07% 136.32% 500.83% 7.57% 136.32% 500.83% 7.56% 136.32% 500.83% 7.56% 136.32% 500.83% 1.56% 45.05% 45.05% 5.57% 136.32% 500.83% 1.50% 45.05% 45.05% 0.50% 45.05% 45.05% 0.50% 13.28% 503.83%	90 191 136 46.9 0.7 B 10 21 15 32.3 0.05 B 15 32 23 32 0.02 B 78 78 45 44.7 0.41 B 97 107 66 44.2 0.42 B 80 63 49.39 0.05 B 162 162 162 504 10.4 C 78 162 162 504 10.4 C 78 162 162 504 10.4 C 78 162 162 504 10.4 0.57 B 162 160 11.4 0.25 B B 60 6 11.2 0.25 B B 728 7.8 7.8 0.24 8	
105 Heart Lake Rd @ Countryside Dr	10412 WBR 104WBR 10580 NBL 105NBL 10580 NBT 105NBL 10580 NBT 105NBT 10580 NBT 105NBT 10580 NBT 105SBL 10565 SBT 105SBL 10566 SBR 105SBR 10567 EBL 105EBL 10568 EBT 105EBL 10568 EBT 105EBL 10568 EBT 105EBL 10569 EBR 105EBT 10569 EBR 105EBT 10569 EBR 105EBT 10569 EBR 105EBT 10561 WBL 105WBL	10 4 38 2 117 1 249 200 4 233 2	14 14 40 16 118 40 240 200 204 164 205 190	5.1 0.01 B 28.579 0.01 6.00% 0.03 1.00% 0.13 A 200% 5 0.13 A 200% 21 0.46 C 1.00%	112 1 113 169 169 169 61 1 62 103 2 105	31 101 152 50 75 75	0.08 1.0 0.09 0.04 A 2.0 3 0.04 A 2.0	0% 3.50% 3.50% 3.50% 3.50% 0% 2.00% 2.00% 0% 2.00% 0%	0.50% 64.06% 13.28% 1.00% 28.24%	14 14 6.6 0.01 B 36 -164 -164 -164 -164 -164 -110	35 36 4 10.5 0.02 C 166 -101
106 Heart Lake Rd @ 410 SB Exit	10812 WBR 1050WBR 10861 NBL 106NBL 10862 NBT 106NBT 10863 NBT 106NBT 10864 SBL 106SBL 10865 SBT 106SBR 10866 SBR 106SBR 10867 EBL 106EBL 10867 EBL 106EBL 10868 EBT 106EBL 10869 EBR 105EBT	66 1 123 4 412 8 376 4	67 54 127 100 420 353 380 372	9 0.05 A 1.00% 0.06 3.00% 0.21 2.00% 23 0.66 C 1.00%	170 <u>3</u> 173 225 <u>2</u> 227	202 298 308 78	0.18 0.18		1.00% 28.24% 1.00% 28.24% 1.50% 13.28% 45.09% 1.50% 13.28% 45.09% 1.50% 13.28% 45.09% 1.000% 100.00% 100.00% -100.00% -100.00% -100.00% -100.00% -100.00% -100.00% -200% 85.39% 64.06%	54 244 190 9.3 0.22 A 113 133 33 -353	259 635 433 12.8 0.58 B 432 432 134 -
107 art Lake Rd @ Sandalwood Pkwy E	00610 WBL 006WBL 00611 WBR 100WBR 00612 WBR 100WBR 00701 NBL 107NBL 10702 NBT 107NBT 10703 NBR 107NBT 10705 SBL 107SBL 10706 SBR 107SBT 10706 SBR 107SBT 10707 EBL 107EBL 10708 EBT 107EBL 10709 EBR 107EBT 10709 EBT 107EBT 10711 WBL 107WBL	13 46 5 51 1 96 3 255 5 123 5 67 7 1725 17 725 11 122 2 934 39	13 10 50 33 52 34 99 90 247 327 240 320 247 326 67 41 1742 1642 84 84 124 124 973 973	9 0.01 A 9.001 39.3 0.17 C 9.00% 41.9 0.61 C 1.00% 41.4 0.66 C 3.00% 107.2 1.05 C 1.00% 50.1 0.67 C 2.0% 50.1 0.67 C 2.0% 11.1 0.13 C 4.05% 11.8.6 0.81 C 1.00% 23.5 0.64 C 2.00% 15.2 0.48 C 4.00%	1 1 65 6 71 91 91 91 107 2 94 128 2 94 128 3 139 79 1 80 1200 24 1224 48 4 52 122 122 122 1801 1819	2 71 91 97 177 177 188 98 189 1224 52 52 122 1729	10 A 39.3 0.17 C 8.0 41.9 0.11 C 30.1 41.4 0.06 C 3.0 107.2 1.05 C 1.0 50.1 0.67 C 2.0 11 0.67 C 2.0 11.1 0.13 C 2.0 11.1 0.13 C 2.0 25.5 0.64 C 1.0 15.2 0.48 C 1.0	2.50% 2.50% 0% 0% 0% 0% 0% 0% 0% 1.00% 0% 2.50%	2.00% 85.39% 64.06% 2.00% 85.39% 64.06% 0.50% 13.28% 0.50% 0.50% 13.28% 0.50% 1.32% 1.32% 0.50% 1.00% 2.22% 0.50% 1.00% 2.22% 0.50% 1.00% 2.22% 0.50% 1.00% 2.22% 0.50% 1.00% 2.22% 0.50% 1.00% 22.25% 0.25.4% 1.00% 22.25% 0.25.4% 1.00% 23.24% 23.24% 1.00% 25.24% 23.24% 1.00% 85.39% 23.24% 1.00% 85.39% 23.24%	19 127 117 9.5 0.14 A 33 33 38.9 0.17 D 34 34 41.5 0.11 D 99 99 41.1 0.06 D 240 250 40.4 1.6 D 243 20 40.4 1.6 D 243 20 4.04 1.6 D 240 250 4.04 1.6 D 243 20.8 35.9 0.08 D 253 53 12 24.2 0.35 D 2106 2106 464 23 0.78 D 2108 108 24 23 0.78 D 230 230 106 217.5 1.34 D 230 230 105 217.5 1.34 D 1804 1894 331 30.8 0.91 D	3 60 58 11.2 0.09 80 80 9 37.8 0.31 103 121 30 44.7 0.47 110 110 15 40 0.07 138 138 39 37.4 0.47 66 65 -19 40.3 0.67 126 50 26 0.07 126 126 146 50 26 0.07 1570 150 16.5 0.58 0.59 67 67 15 16.5 0.58 156 156 34 23.3 0.7 2205 2468 80.2 1.11
108 Disie Rd ® Mayfield Rd	10712 WBR 107WBR 10861 NBT 100NBT 10862 NBT 100NBT 10863 NBR 100NBT 10864 SBL 100SBL 10865 SBT 100SBL 10866 SBT 100SBR 10866 SBT 100SBR 10867 SBT 100SBR 10868 EBT 100SBR 10869 EBR 100SBR 10809 EBR 100SBR 10810 WBT 100WWBT 10811 WBT 100WWBT	37 2 87 7 29 2 34 6 22 14 212 5 344 6 192 20 1006 86 224 3 567 10 564 69	39 25 94 94 31 31 36 36 217 217 360 350 212 212 214 1184 207 207 663 663	37 0.5 B 7.60% 30 0.08 B 6.10% 28.6 0.03 B 16.20% 31.2 0.17 B 39.60% 36.2 0.56 B 2.10% 36.2 0.56 B 2.10% 36.3 0.49 B 1.70% 36.4 0.44 B 2.20% 12.6 0.44 B 7.20% 10.7 0.18 B 1.00% 8.9 0.24 B 15.40%	49 2 51 15 2 17 51 2 53 218 18 236 306 3 309 821 84 905 109 1 110 51 1 52 1028 77 1105	109 169 153 51 17 53 236 53 905 52 905 1106	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0% 2.50% 4.50% 4.50% 9% 4.50% 0% 1.00% 0% 1.00% 0% 1.00% 0% 2.00% 0% 2.00% 0% 2.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00% 0% 1.00%	1.00% 85.39% 28.24% 5.50% 200.54% 281.34% 5.50% 200.54% 281.34% 5.50% 200.54% 281.34% 5.50% 200.54% 281.34% 3.50% 28.24% 136.27% 3.50% 28.24% 136.27% 3.60% 28.44% 136.27% 64.05% 64.05% 64.05% 2.50% 28.24% 85.39% 2.50% 28.24% 85.39% 2.50% 28.24% 85.39% 2.50% 28.24% 85.39%	46 46 21 11.4 0.03 D 283 283 199 17.3 1.25 D 83 93 62 28.4 0.18 D 120 120 80 27.4 0.09 D 46 46 10 28.6 0.17 D 276 278 61 33 0.52 D 449 449 99 38 0.52 D 1842 1942 758 22.8 0.99 D 467 468 19 56.5 0.79 D 68 89 19 23.6 0.79 D 68 1942 758 22.8 0.99 D 467 448 99 36 0.79 D 68 19 15.4 0.34 D D 68 889 19 15.4 0.44 D 65	140 154 55 11.9 0.14 11 603 603 445 146.8 1.21 1 583 583 430 37 0.77 1 194 194 143 22.4 0.13 1 40 40 23 28.5 0.33 1 155 17.2 23.8 0.17 1 560 569 32.2 40.9 1.65 560 505 40.52 1.65 1.64 110 110 22.1 0.07 1 96 96 44 20.1 0.33 1 2049 2449 944 65.5 1.04 1
109 Dixie Rd @ Countryside Dr	10001 NBL 10048L 10002 NBR 10048L 10004 NBR 10049L 10004 SEI 10058E 10004 SEI 10058E 10004 SEI 10058E 10005 SET 10058ET 10006 SER 1005EL 10006 EBR 1005ER 10006 EBR 1005ER 10006 EBR 1005ER 10010 WBL 100WWBT 10011 WBR 100WWBT	29 - 108 2 79 7 90 3 285 5 3 7 105 2 63 2 35 2 91 -	29 38 100 193 5 86 112 1 102 133 3 300 390 1 3 7 9 1 1 105 234 1 1 65 105 - 1 67 48 - 9 91 153 1 26	6.3 0.06 B	35 35 225 7 232 47 5 52 19 19 19 133 4 137 12 12 12 7 7 7 76 70 70	83 37 81 37 95 37 178 2 178 2 18 1 19 1 100 30 45 1 170 5	6.3 0.06 B 6.9 0.17 B 3.0 24.6 0.07 B 9.6 7.2 0.18 B - 8.3 0.35 B 2.9 24.3 0.03 B - 26.1 0.3 B - 24.6 0.07 B 5.6 26.1 0.3 B - 24.6 0.07 B 5.8 26 0.21 B 3.3	1.50% 1.50% 2% 1.50% 2.50% 2.50% 2.50% 2.50% 2.50% 3% 2.50% 3% 1.50% 3% 1.50%	2.076 45.076 64.076 2.075 45.076 64.076 2.075 45.076 64.076 3.576 85.397 136.236 3.5776 85.397 136.237 3.5776 85.397 136.237 3.5776 85.397 64.067 2.0706 85.397 64.067 2.0706 85.397 64.067 2.0707 85.397 64.067 2.0706 85.397 64.067 3.0707 45.0975 103.387 3.0706 45.0975 103.387 3.0706 45.0975 103.387	85 55 17.3 11.1 0.22 B 280 280 87 10 0.28 B 162 162 50.2 23.1 0.11 B 246 246 11.3.4 12.2 0.4 B 723 723 33.3 16.9 0.7 B 15 15 7 16.9 0.7 B 17 17 7.9 22.7 0.05 B 434 434 200 25.9 0.44 B 195 196 90 23.5 0.15 B 70 7.19 25.8 0.31 B 22.2 22.2 69 23.9 0.22 B 49 49 15.2 2.25 0.03 B 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 110 ie Rd @ Sandaiwood Pkwy E 1 1	11000 NBL 110NBL 11002 NBR 110NBR 11003 NBR 110SBR 11004 BBT 110SBR 1005 SBR 110SBR 1000 BBR 110SBR 1000 BBR 110SBR 11000 EBT 110EBT 11000 EBT 110EBT 11000 EBT 110EBT 11000 EBT 110EBT 11010 WBL 110WBL 11011 WFT 110WFT	25 3 263 14 66 3 76 3 76 22 340 10 247 9 127 33 144 8 149 6 268 29 158 4	28 39 28 78 307 27 308 77 309 10 59 56 59 279 1360 1360 1360 33 222 192 155 155 957 957 957 100	30.5 0.28 C 3.80% 30 0.22 C 4.60% 27.9 0.05 C 4.40% 36.6 0.18 C 3.60% 40.7 0.5 C 3.50% 37.6 0.28 C 2.80% 37.6 0.74 C 2.80% 37.6 0.70 C 3.50% 37.6 0.70 C 3.50% 37.6 0.70 C 3.50% 37.8 0.76 C 3.50% 37.8 0.76 C 3.50% 37.8 0.76 C 3.50% 38.1 0.66 C 3.90% 37.6 0.48 C 3.00%	1092 17 1109 99 2 101 80 1 81	215 627 25 637 25 134 247 14 288 298 298 1109 21 100 1109 21 101 1353 28 51	30.5 0.28 C 0.9 30 0.22 C 1.7 27.9 0.05 C .7 36.6 0.18 C .7 37.6 0.25 C 3.2 37.6 0.26 C 1.4 37.6 0.74 C 1.3 37.6 0.76 C 1.5 C 2.0 .7 .5	1.00% 1.00% 1.00% 1.00% 2.00% 0% 2.00% 0% 2.00% 0% 3.00% 0% 3.00% 0% 2.00% 0% 3.00% 0% 2.00% 0% 2.00% 0% 2.00% 2.00%	2.00% 32.34% 64.00% 2.00% 32.34% 64.00% 2.00% 32.34% 64.00% 2.00% 32.34% 64.00% 3.60% 64.00% 136.33% 3.60% 64.00% 136.33% 3.60% 64.00% 136.33% 3.60% 64.00% 136.32% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.50% 109.33% 13.28% 0.00% 64.06% 109.33%	via via 1.32 2.42 0.53 0 385 355 76 39.2 0.55 F 385 355 76 30 0.27 F 90 9 55 27 0.37 F 825 335 326 48 0.73 F 825 355 226 48 0.73 F 453 455 456 0.76 77 F 431 411 225 763 2.58 F 2648 2848 1685 381 1.74 F 402 402 210 381 1.74 F 452 49 94.5 0.94 F 1570 1570 613 37.7 0.8 F 1564 154 64 37.7 0.8 F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 111 1 Heart Lake Rd @ Private Rd 1 1	11012 WBR 110WSR 11100 NBT 111NBL 11102 NBT 111NBL 11103 NBT 111NBL 11104 NBT 111NBL 1106 SBT 111SBT 1106 SBT 111SBT 1106 SBT 111SBT 1107 SBL 111EBL 1108 EBL 111EBL 1108 EBR 111EBL 11108 EBR 111EBR 11108 EBR 111WBL 11109 EBR 111WBL 11110 WBT 111WBR 11110 WBT 111WBR	57 1 81 1	122 100 58 46 52 64 240 333 15 21 1 1 20 20	C 3.30% 4 0.04 A 1.00% 4 0.04 A 1.00% 0.21 1.00% 0.21 1.00% 0.21 11 0.03 B 11 0.03 B 7.00%	61 61 209 2 211 211 226 2 15 15 18 18	51 67 233 198 15 18 18 10		3.50% 0% 3.50% 3.50% -100.00% 0% -100.00%	2.00% 136.32% 64.06% 2.00% 136.32% 64.06% 2.00% 136.32% 64.06% -100.00% -100.00% -100.00% -100.00% -100.00% -100.00%	164 164 64 37.7 0.8 F 109 109 63 3.4 0.07 A 151 151 87 	107 107 56 260 1.48 110 110 43 2.1 0.07 382 382 149
1 112 1 Heart Lake Rd ATR 1 *Balance to this ATR 1	1112 VBR 111/BBR EC 11030 NBT 111/BBR 111/BBR 11020 NBT 112/BBR 112/BBR 11020 NBT 112/BBR 112/BBR 11020 SBL 112/BBR 112/BBR 11020 SBR 112/BBR 112/BBR 11020 SBR 112/BBR 112/BBR 11020 SBR 112/BBR 112/BBR 11020 EBT 112/EBR 112/BBR 11200 EBT 112/EBR 112/BBR 11200 EBT 112/EBR 112/BBR 11200 EBT 112/EBR 112/BBR 11210 WBL 112/WBL 112/WBL 11211 WBT 112/WBL EC		110 110 353 353			300 308				110 110 353 353	300 300 308 308
1 10 10 10 10 10 10 10 10 10	11212 WBR 112WBR 100000	AM Peak Hour (7 AM Peak Hour (7 AM Cars Trucks Tota	Peak Hour AM Peak Hour (AM Peak Hour (7:3M Peak H I Vehicles - Total Vehicles - Pedestrians Cyclists	o AM Peak Ho AM Peak Ho AM Peak Ho AM Peak Delay V/C Intersection ' Heavy Vel	our PM Peak HPM Peak HPM Peak Hour (-PM F cle 'Cars Trucks Total Vehicles - Total	Paak Hour (4: PM Peak Hour (4: PM Peak Ho Vehicles - Bi Pedestrians Cyclists D		ak Hour 2041 Annual G Vehicle (AM Peak	32041 Annual G2041 Annual G2041 Annual Gro PM Peak AM Peak PM Peak	wth #REFI #REFI #REFI #REFI #REFI Total Vehicles - Balanced Delay V/C Intersectio	#REFI #REFI # LOS Total Vehicles - Balanced Delay V/C Inter

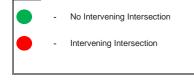
Legend

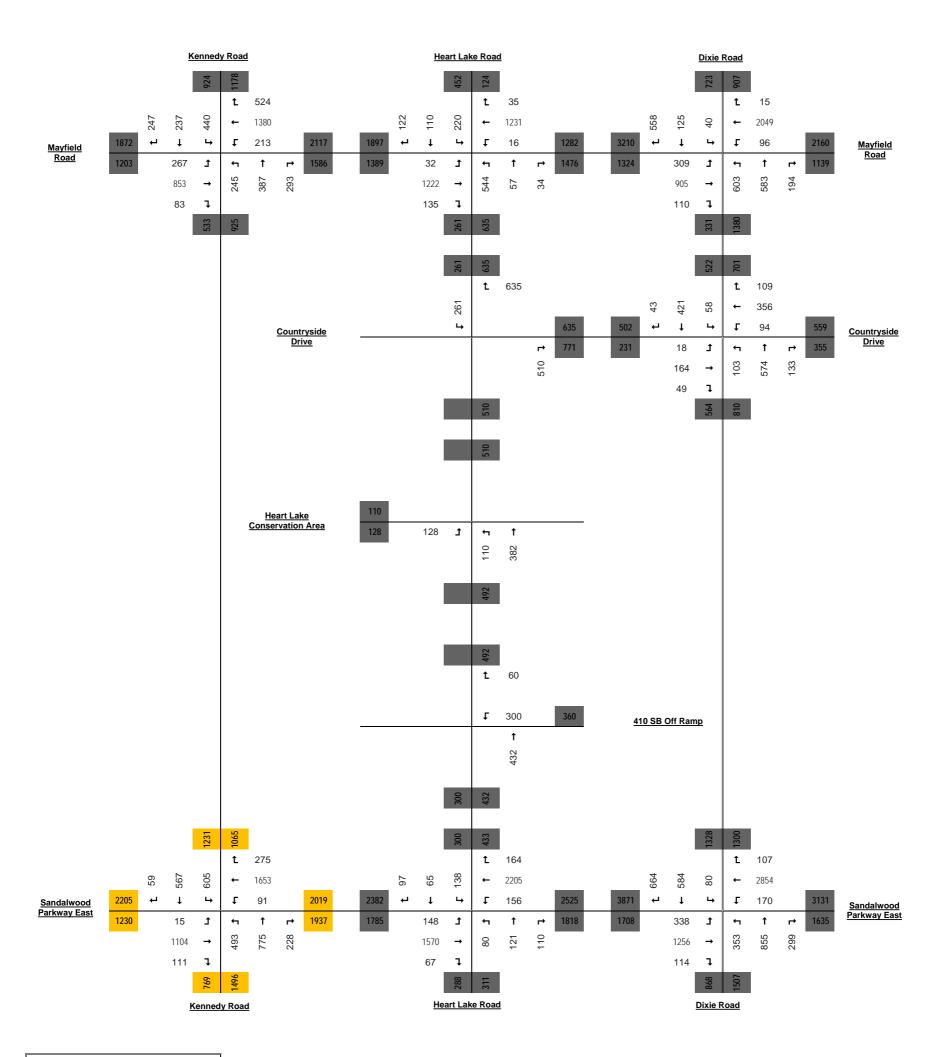


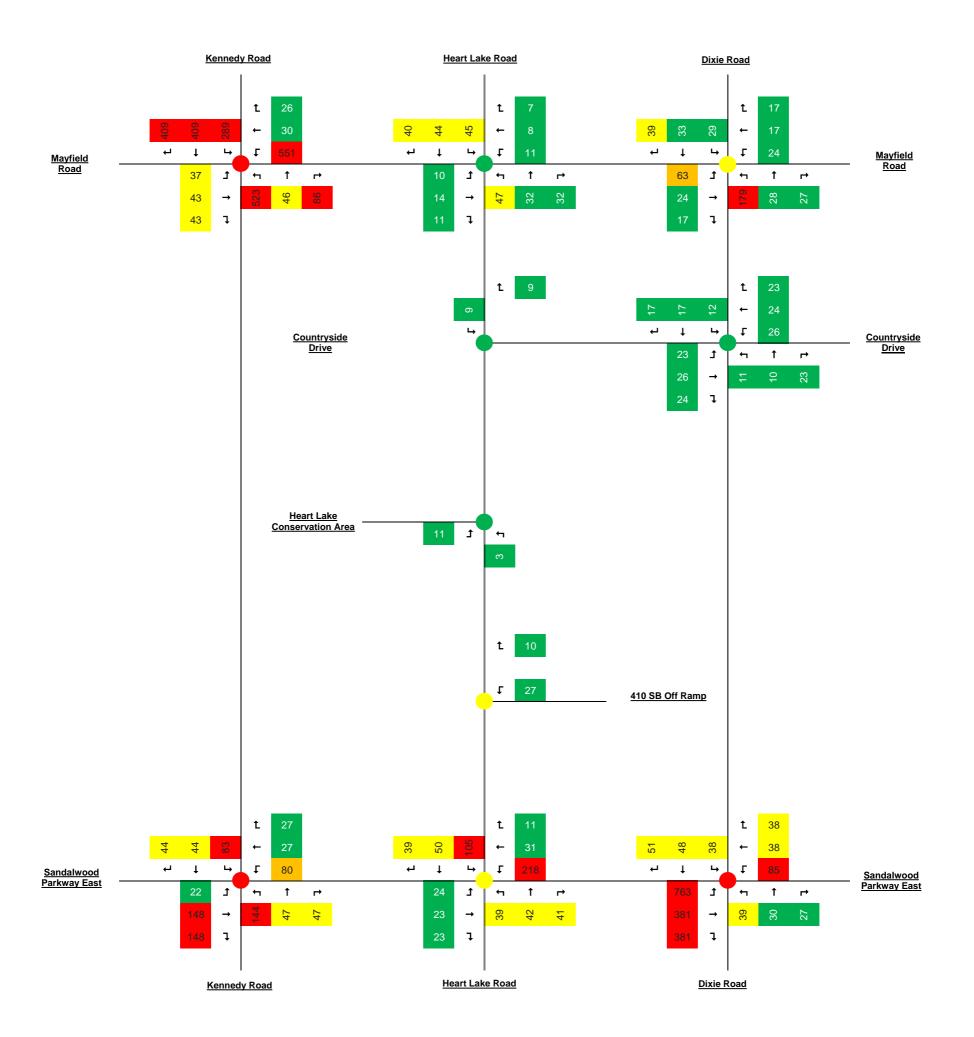
Legend

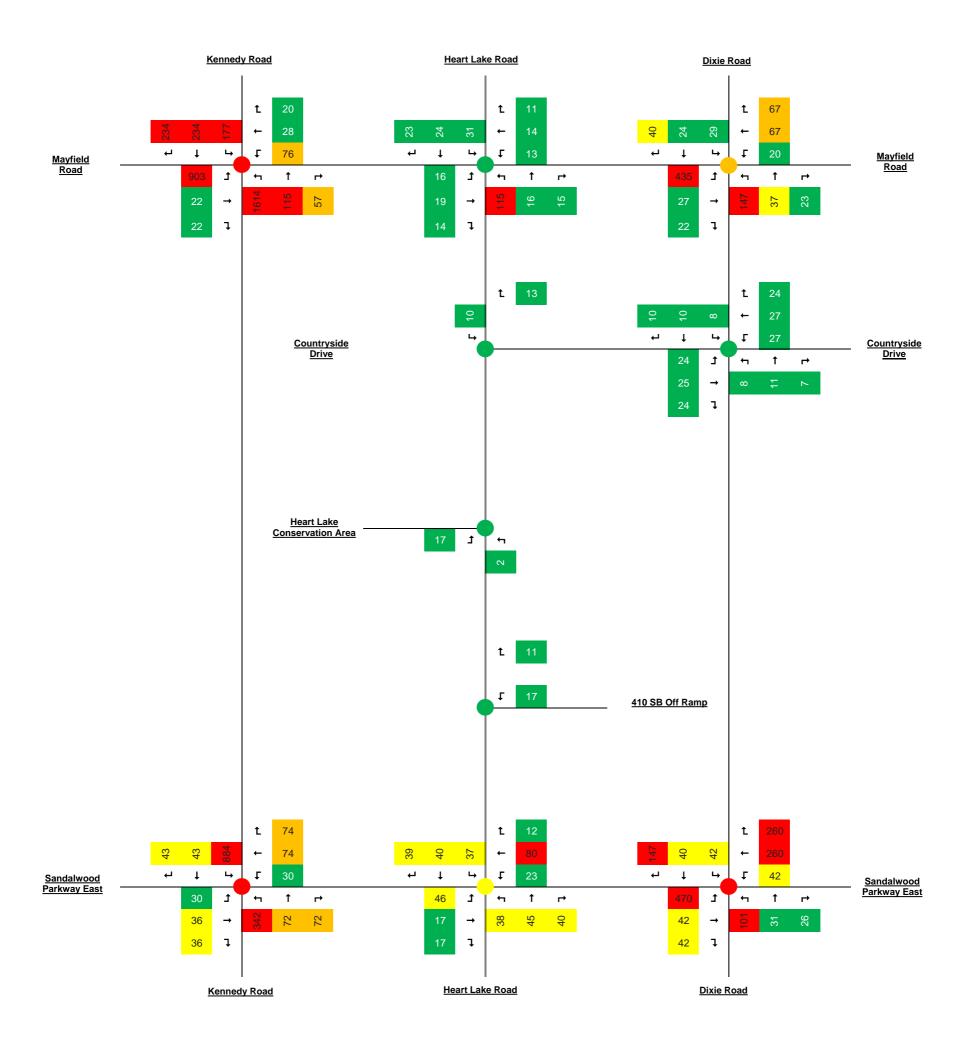

> All percentages rounded up to nearest 0.5%

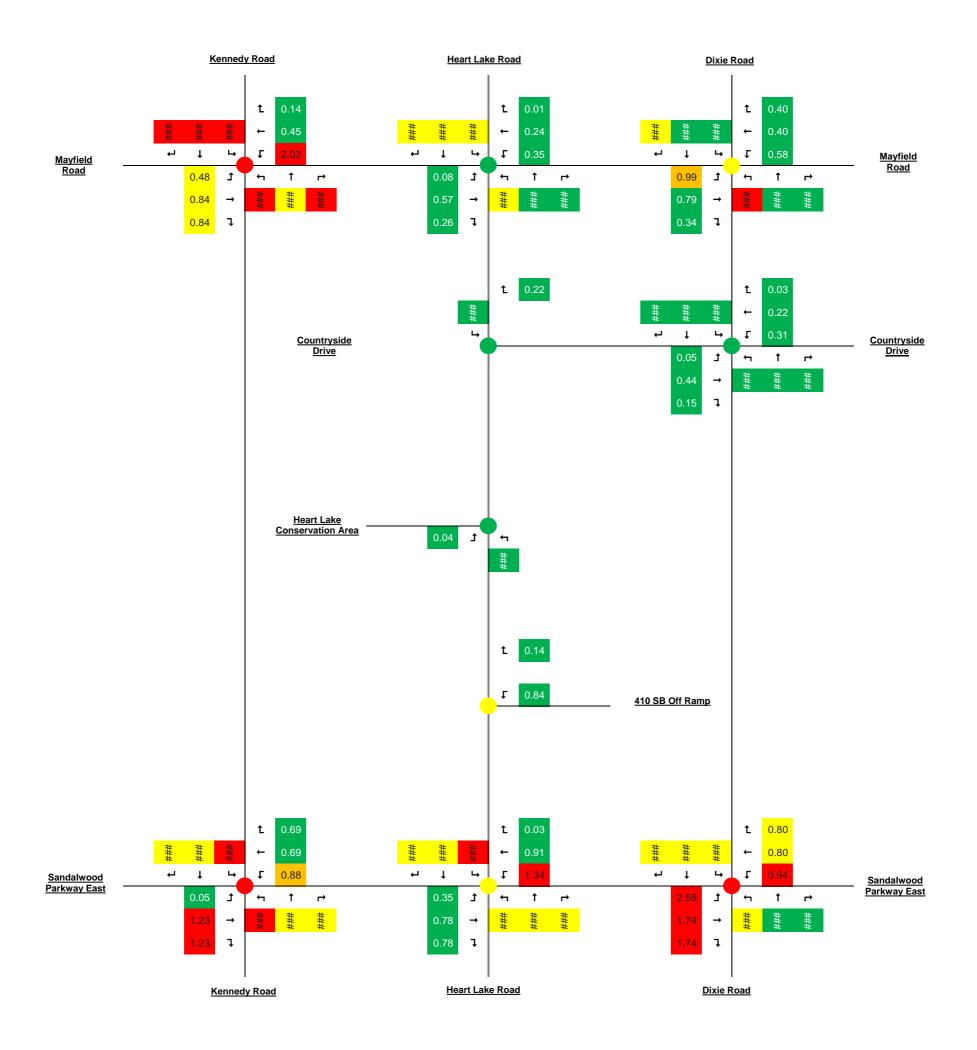


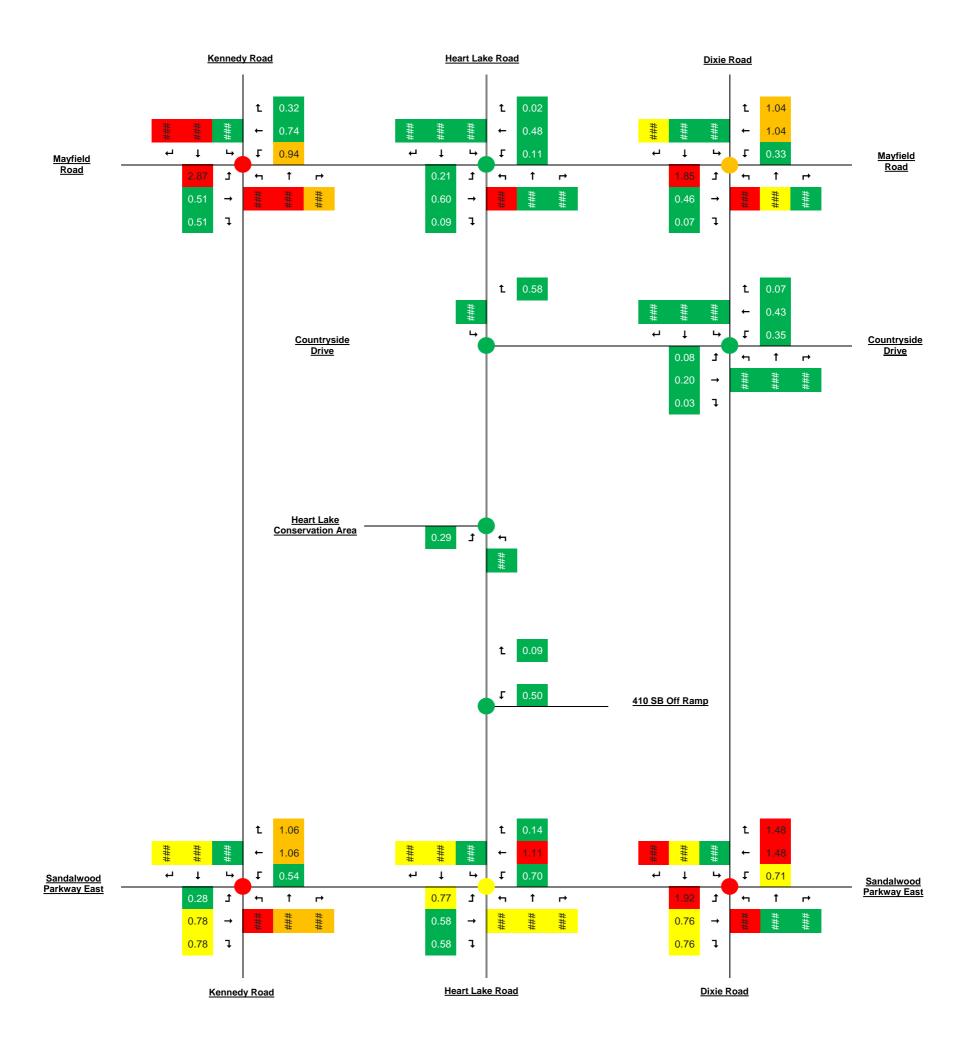


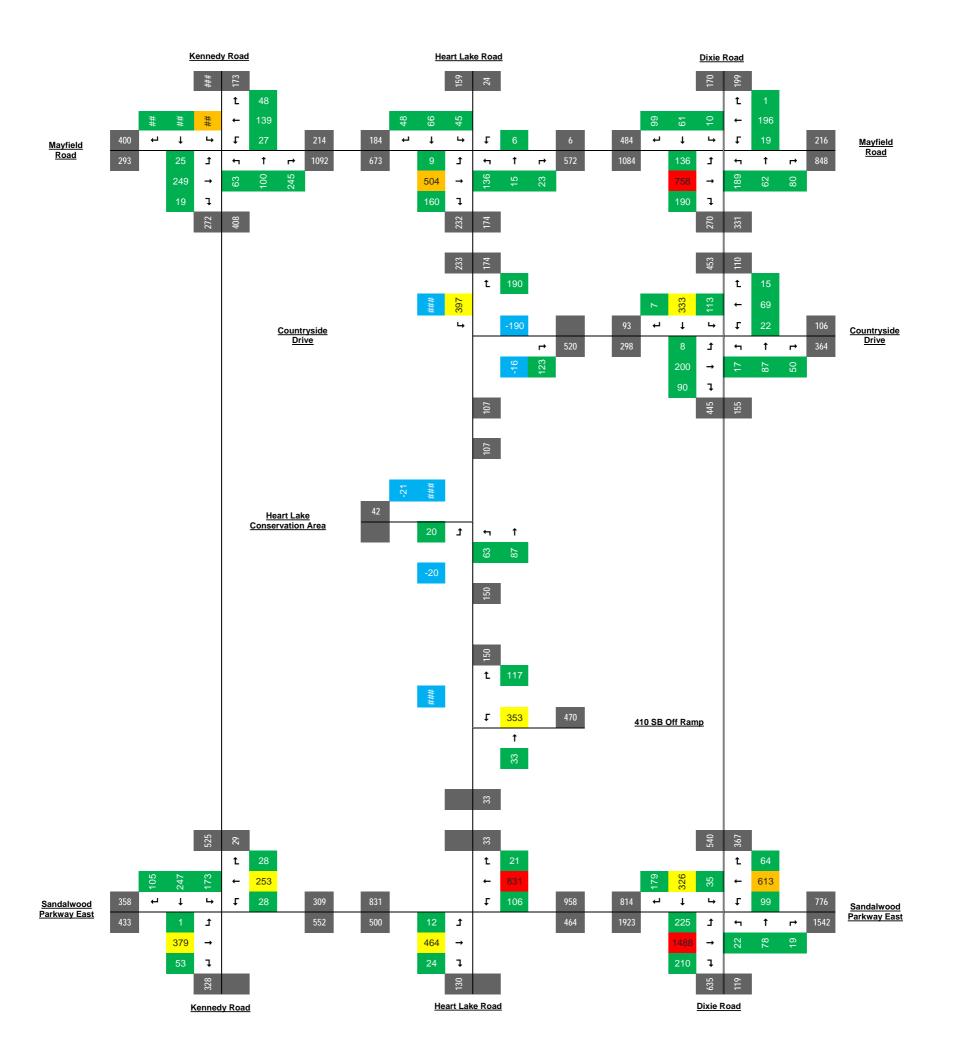

> All percentages rounded up to nearest 0.5%

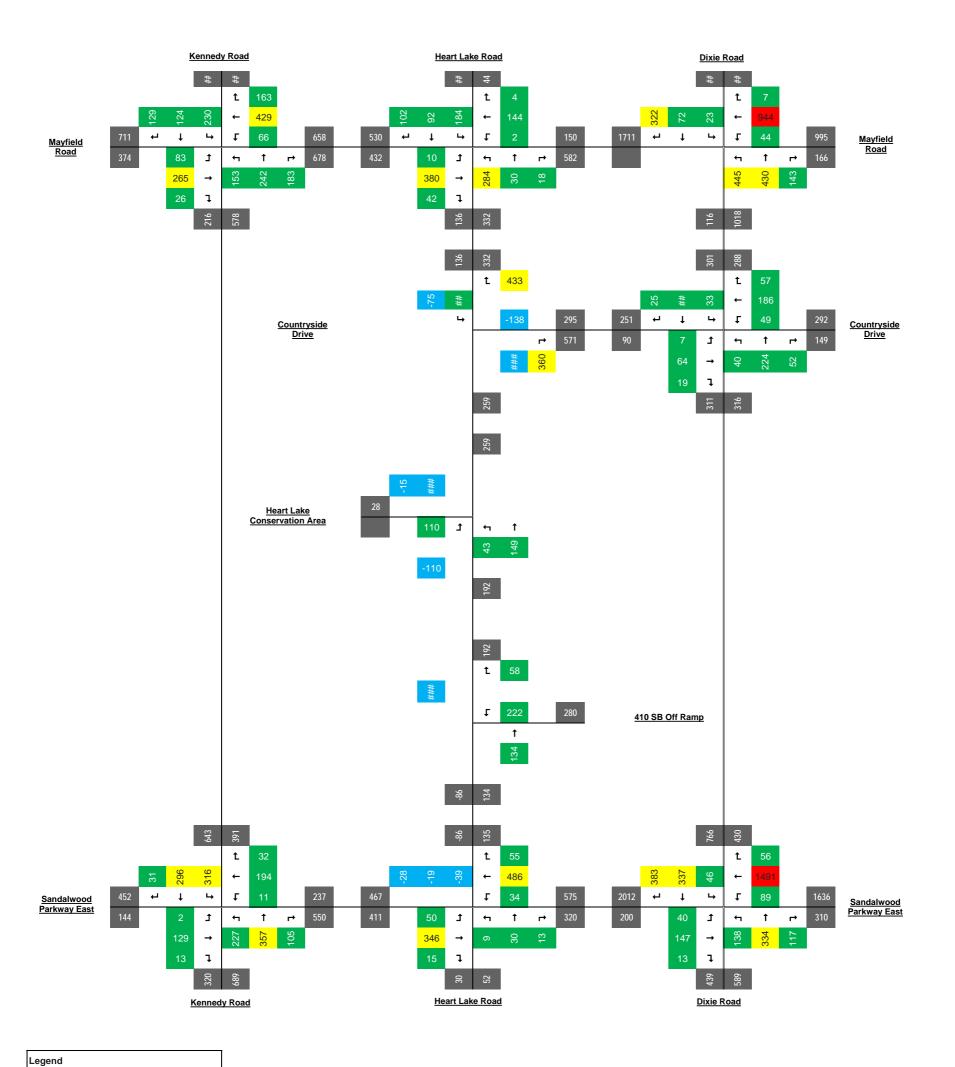


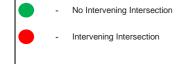





Legend







Volum

•

- Vehicle Totals

Int Numb	er
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	

#N/A

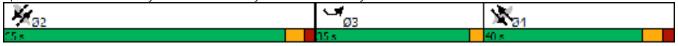
42	0			0										
60 Minut	e Counts													7
DATE	TIME	INTID	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
0		101	245	387	293	440	237	247	267	853	83	213	1380	524
0		102	0	0	0	0	0	0	0	0	0	0	0	0
0		103	493	775	228	605	567	59	15	1104	111	91	1653	275
0		104	544	57	34	220	110	122	32	1222	135	16	1231	35
0		105	0	0	510	261	0	0	0	0	0	0	0	635
0		106	0	432	0	0	0	0	0	0	0	300	0	60
0		107	80	121	110	138	65	97	148	1570	67	156	2205	164
0		108	603	583	194	40	125	558	309	905	110	96	2049	15
0		109	103	574	133	58	421	43	18	164	49	94	356	109
0		110	353	855	299	80	584	664	338	1256	114	170	2854	107
<u> </u>		111	110	382	0	0	0	00	128	0	0	0	0	0

FUNCTION AND DESIGN REVIEW OF THE HEART LAKE ROAD CORRIDOR

Appendix D Synchro Reports November 1, 2019

APPENDIX D Synchro Reports

Queues
101: Mayfield Road & Kennedy Road North/Kennedy Road


	- 4	\mathbf{x}	~	. *	۲	Ţ	*	Ę.	*	•	
Lane Group	SEL	SET	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	5	ų,	ካ	- †	1	<u>آ</u>	† Ъ	5	- ††	- 7	
Traffic Volume (vph)	439	166	38	60	147	87	883	96	493	169	
Future Volume (vph)	439	166	38	60	147	87	883	96	493	169	
Lane Group Flow (vph)	439	311	38	60	147	87	952	96	493	169	
Turn Type	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases	3	4		4			2		2		
Permitted Phases	4		4		4	2		2		2	
Detector Phase	3	4	4	4	4	2	2	2	2	2	
Switch Phase											
Minimum Initial (s)	5.0	8.0	8.0	8.0	8.0	25.0	25.0	25.0	25.0	25.0	
Minimum Split (s)	8.0	31.8	31.8	31.8	31.8	31.3	31.3	31.3	31.3	31.3	
Total Split (s)	35.0	40.0	40.0	40.0	40.0	65.0	65.0	65.0	65.0	65.0	
Total Split (%)	25.0%	28.6%	28.6%	28.6%	28.6%	46.4%	46.4%	46.4%	46.4%	46.4%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	0.0	2.8	2.8	2.8	2.8	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.8	6.8	6.8	6.8	6.3	6.3	6.3	6.3	6.3	
Lead/Lag	Lead	Lag	Lag	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	Max	
v/c Ratio	0.62	0.82	0.37	0.16	0.33	0.27	0.61	0.60	0.33	0.22	
Control Delay	27.5	62.7	55.9	43.7	9.0	28.2	30.7	49.2	25.5	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	27.5	62.7	55.9	43.7	9.0	28.2	30.7	49.2	25.5	4.2	
Queue Length 50th (m)	70.2	66.3	8.0	12.0	0.6	13.7	94.8	18.2	42.1	0.0	
Queue Length 95th (m)	96.5	98.6	18.7	23.7	16.3	27.6	121.6	#45.2	57.6	12.4	
Internal Link Dist (m)		493.9		1200.7			613.8		728.2		
Turn Bay Length (m)	100.0				100.0	90.0		150.0		130.0	
Base Capacity (vph)	740	454	126	444	510	322	1556	160	1492	773	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.59	0.69	0.30	0.14	0.29	0.27	0.61	0.60	0.33	0.22	
Intersection Summary											
Cycle Length: 140											
Actuated Cycle Length: 131	1.3										

Actuated Cycle Length: 13 Natural Cycle: 75

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

Splits and Phases: 101: Mayfield Road & Kennedy Road North/Kennedy Road

Heart Lake Road Transportation Study 03/01/2017 Baseline - AM Peak Hour

HCM Signalized Ir 101: Mayfield Roa		•	•	-		y Road	d			
		×	1	Ŷ	*	۲	ľ	*	ſ	í,
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL
Lane Configurations	٦ آ	Ą		5	+	1	٦ آ	ta an		5
Traffic Volume (vph)	439	166	145	38	60	147	87	883	69	96
Future Volume (vph)	439	166	145	38	60	147	87	883	69	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		6.8	6.8	6.8	6.3	6.3		6.3
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00	1.00	1.00	1.00		1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00
Frt	1.00	0.93		1.00	1.00	0.85	1.00	0.99		1.00
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95
Satd. Flow (prot)	1789	1700		1768	1746	1585	1601	3452		1772
Flt Permitted	0.72	1.00		0.27	1.00	1.00	0.42	1.00		0.19
Satd. Flow (perm)	1352	1700		494	1746	1585	716	3452		356
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	439	166	145	38	60	147	87	883	69	96
RTOR Reduction (vph)	0	23	0	0	0	114	0	4	0	0
Lane Group Flow (vph)	439	288	0	38	60	33	87	948	0	96
Confl. Peds. (#/hr)			3	3						
Heavy Vehicles (%)	2%	1%	8%	3%	10%	3%	14%	4%	12%	3%
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA		Perm
Dratacted Dhaces	 ງ	4			4			C		

07/11/2019

1

SWR

¥

SWT

iviovement	SEL	SET	SER	INVVL	INVVI	INVVR	NEL	INET	NER	SVVL	2001	SVVR
Lane Configurations	5	ą,		5	- †	1	5	ta an		5	- † †	7
Traffic Volume (vph)	439	166	145	38	60	147	87	883	69	96	493	169
Future Volume (vph)	439	166	145	38	60	147	87	883	69	96	493	169
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		6.8	6.8	6.8	6.3	6.3		6.3	6.3	6.3
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.93		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1789	1700		1768	1746	1585	1601	3452		1772	3318	1512
Flt Permitted	0.72	1.00		0.27	1.00	1.00	0.42	1.00		0.19	1.00	1.00
Satd. Flow (perm)	1352	1700		494	1746	1585	716	3452		356	3318	1512
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	439	166	145	38	60	147	87	883	69	96	493	169
RTOR Reduction (vph)	0	23	0	0	0	114	0	4	0	0	0	93
Lane Group Flow (vph)	439	288	0	38	60	33	87	948	0	96	493	76
Confl. Peds. (#/hr)			3	3					-			
Heavy Vehicles (%)	2%	1%	8%	3%	10%	3%	14%	4%	12%	3%	10%	8%
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	3	4		1 01111	4	1 01111	1 01111	2		1 01111	2	1 0111
Permitted Phases	4	•		4		4	2	-		2	-	2
Actuated Green, G (s)	56.1	27.7		27.7	27.7	27.7	59.0	59.0		59.0	59.0	59.0
Effective Green, g (s)	56.1	27.7		27.7	27.7	27.7	59.0	59.0		59.0	59.0	59.0
Actuated g/C Ratio	0.43	0.21		0.21	0.21	0.21	0.45	0.45		0.45	0.45	0.45
Clearance Time (s)	3.0	6.8		6.8	6.8	6.8	6.3	6.3		6.3	6.3	6.3
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Grp Cap (vph)	672	358		104	368	334	321	1552		160	1492	679
v/s Ratio Prot	c0.14	c0.17		101	0.03	001	021	c0.27		100	0.15	0//
v/s Ratio Perm	0.14	00.17		0.08	0.00	0.02	0.12	00.27		0.27	0.10	0.05
v/c Ratio	0.65	0.80		0.37	0.16	0.10	0.27	0.61		0.60	0.33	0.00
Uniform Delay, d1	28.5	49.2		44.2	42.3	41.7	22.6	27.4		27.2	23.3	20.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.1	14.0		4.5	0.4	0.3	2.1	1.8		15.5	0.6	0.3
Delay (s)	31.6	63.1		48.7	42.7	42.0	24.7	29.2		42.7	23.9	21.3
Level of Service	C	E		D	D	D	C	C		D	C	C
Approach Delay (s)	0	44.6		U	43.2	D	Ŭ	28.8		U	25.7	Ŭ
Approach LOS		D			40.2 D			20.0 C			20.7 C	
••		D			D			C			C	
Intersection Summary												
HCM 2000 Control Delay			33.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.67									
Actuated Cycle Length (s)			131.2		um of los				16.1			
Intersection Capacity Utiliza	ation		95.2%	IC	CU Level	of Service	;		F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues
103: Sandalwood Parkway East & Kennedy Road North

	4	\mathbf{x}	~	*	7	1	<u>(</u>	*	
Lane Group	SEL	SET	NWL	NWT	NEL	NET	SWL	SWT	
Lane Configurations	5	† 1≽	٦ آ	† 1≽	٦ آ	†1 ≽	ľ	±	
Traffic Volume (vph)	127	181	310	539	4	1343	99	895	
Future Volume (vph)	127	181	310	539	4	1343	99	895	
Lane Group Flow (vph)	127	258	310	583	4	1531	99	993	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	pm+pt	NA	
Protected Phases	3	8	7	4		2	1	6	
Permitted Phases	8		4		2		6		
Detector Phase	3	8	7	4	2	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	8.0	5.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	40.0	8.0	40.0	36.0	36.0	8.0	36.0	
Total Split (s)	16.0	49.0	12.0	45.0	69.0	69.0	10.0	79.0	
Total Split (%)	11.4%	35.0%	8.6%	32.1%	49.3%	49.3%	7.1%	56.4%	
Yellow Time (s)	3.0	4.0	3.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	2.0	0.0	2.0	2.0	2.0	0.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.0	3.0	6.0	6.0	6.0	3.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	Мах	None	Мах	None	None	None	None	
v/c Ratio	0.41	0.26	0.69	0.60	0.02	0.96	0.67	0.54	
Control Delay	30.1	30.2	42.5	46.0	22.0	51.7	43.3	23.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	30.1	30.2	42.5	46.0	22.0	51.7	43.3	23.4	
Queue Length 50th (m)	20.2	21.0	55.6	67.6	0.6	194.5	11.8	85.4	
Queue Length 95th (m)	33.1	31.6	79.1	85.7	2.8	#242.1	#32.3	102.8	
Internal Link Dist (m)		1159.4		354.2		240.5		84.0	
Turn Bay Length (m)	70.0		100.0		75.0		85.0		
Base Capacity (vph)	320	999	451	974	187	1597	147	1834	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.26	0.69	0.60	0.02	0.96	0.67	0.54	
Intersection Summary									

Cycle Length: 140 Actuated Cycle Length: 140

Natural Cycle: 105

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 103: Sandalwood Parkway East & Kennedy Road North

401 X02	 	21
10 s 69 s	16 s	45 s
×4.26	₩ 107	¥ ₂₀₀
79 s	12 s 🔡 4	49.s

HCM Signalized Intersecti	on Capacity Anal	ysis
103: Sandalwood Parkway	y East & Kennedy	/ Road North

07/11/2019

	-	\mathbf{x}	2	r	•	۲	3	1	7	ų,	*	۰.
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦ ۲	† Ъ		5	† Ъ		5	† Ъ		ľ	t, the factor of the factor	
Traffic Volume (vph)	127	181	77	310	539	44	4	1343	188	99	895	98
Future Volume (vph)	127	181	77	310	539	44	4	1343	188	99	895	98
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		3.0	6.0		6.0	6.0		3.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.96		1.00	0.99		1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1789	3145		1772	3417		1674	3530		1807	3509	
Flt Permitted	0.25	1.00		0.59	1.00		0.24	1.00		0.06	1.00	
Satd. Flow (perm)	479	3145		1105	3417		417	3530		115	3509	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	127	181	77	310	539	44	4	1343	188	99	895	98
RTOR Reduction (vph)	0	33	0	0	4	0	0	8	0	0	6	0
Lane Group Flow (vph)	127	225	0	310	579	0	4	1523	0	99	987	0
Heavy Vehicles (%)	2%	1%	34%	3%	6%	1%	9%	1%	5%	1%	2%	7%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	3	8		7	4			2		1	6	
Permitted Phases	8			4			2			6		
Actuated Green, G (s)	55.0	43.0		48.8	39.8		63.0	63.0		73.0	73.0	
Effective Green, g (s)	55.0	43.0		48.8	39.8		63.0	63.0		73.0	73.0	
Actuated g/C Ratio	0.39	0.31		0.35	0.28		0.45	0.45		0.52	0.52	
Clearance Time (s)	3.0	6.0		3.0	6.0		6.0	6.0		3.0	6.0	
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Grp Cap (vph)	302	965		428	971		187	1588		144	1829	
v/s Ratio Prot	c0.04	0.07		c0.05	0.17			c0.43		c0.03	0.28	
v/s Ratio Perm	0.13			c0.21			0.01			0.32		
v/c Ratio	0.42	0.23		0.72	0.60		0.02	0.96		0.69	0.54	
Uniform Delay, d1	29.1	36.2		37.5	43.2		21.4	37.3		30.7	22.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.0	0.6		7.3	2.7		0.1	14.3		16.2	0.6	
Delay (s)	31.1	36.8		44.8	45.9		21.5	51.5		46.9	22.9	
Level of Service	С	D		D	D		С	D		D	С	
Approach Delay (s)		34.9			45.5			51.4			25.1	
Approach LOS		С			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			41.1	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	icity ratio		0.83									
Actuated Cycle Length (s)			140.0		um of los				18.0			
Intersection Capacity Utiliza	ation		89.9%	IC	CU Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 104: Mayfield Road & Heart Lake Road

07/11/2019

		×	1	~	×	۲	Ţ	1	3	Ę.	*	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	- +	1	- ኘ	- +	7	5	444	7	<u>آ</u>	444	7
Traffic Volume (vph)	33	41	35	55	6	9	21	1118	263	60	728	14
Future Volume (vph)	33	41	35	55	6	9	21	1118	263	60	728	14
Lane Group Flow (vph)	33	41	35	55	6	9	21	1118	263	60	728	14
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases		8		7	4			2		1	6	
Permitted Phases	8		8	4		4	2		2	6		6
Detector Phase	8	8	8	7	4	4	2	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	12.0	12.0	12.0	5.0	12.0	12.0
Minimum Split (s)	39.9	39.9	39.9	8.0	39.9	39.9	35.7	35.7	35.7	8.0	35.7	35.7
Total Split (s)	41.0	41.0	41.0	9.0	50.0	50.0	81.0	81.0	81.0	9.0	90.0	90.0
Total Split (%)	29.3%	29.3%	29.3%	6.4%	35.7%	35.7%	57. 9 %	57.9%	57.9%	6.4%	64.3%	64.3%
Yellow Time (s)	4.0	4.0	4.0	3.0	4.0	4.0	4.6	4.6	4.6	3.0	4.6	4.6
All-Red Time (s)	2.9	2.9	2.9	0.0	2.9	2.9	2.1	2.1	2.1	0.0	2.1	2.1
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	3.0	6.9	6.9	6.7	6.7	6.7	3.0	6.7	6.7
Lead/Lag	Lag	Lag	Lag	Lead			Lag	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes	Yes		
Recall Mode	None	None	None	None	None	None	Min	Min	Min	None	Min	Min
v/c Ratio	0.15	0.14	0.11	0.18	0.01	0.02	0.05	0.39	0.25	0.15	0.23	0.02
Control Delay	33.4	32.6	2.0	22.8	24.5	0.1	11.9	12.4	2.4	6.2	6.9	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.4	32.6	2.0	22.8	24.5	0.1	11.9	12.4	2.4	6.2	6.9	0.0
Queue Length 50th (m)	3.8	4.6	0.0	4.9	0.6	0.0	1.5	35.7	0.0	2.7	15.7	0.0
Queue Length 95th (m)	12.4	14.2	1.5	14.6	3.6	0.0	5.0	48.2	10.0	6.6	22.9	0.0
Internal Link Dist (m)		409.0			470.2			258.4			1347.7	
Turn Bay Length (m)	215.0		130.0	210.0		110.0	180.0		280.0	160.0		160.0
Base Capacity (vph)	807	1060	943	312	1294	1117	635	4736	1544	402	4619	1249
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.04	0.04	0.18	0.00	0.01	0.03	0.24	0.17	0.15	0.16	0.01
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 67												
Natural Cycle: 95												
Control Type: Actuated-Unc	coordinated											

Splits and Phases: 104: Mayfield Road & Heart Lake Road

4.01 X.02	Not
8 s 81 s	50 s
×426	- 07 × 08
R0 s	9.5 41.5

HCM Signalized Intersection Capacity Analysis 104: Mayfield Road & Heart Lake Road

		×	2	~	*	₹.	7	1	4	4	*	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>آ</u>	- †	- T	ሻ	- †	7	5	4††	- 7	- ከ	444	1
Traffic Volume (vph)	33	41	35	55	6	9	21	1118	263	60	728	14
Future Volume (vph)	33	41	35	55	6	9	21	1118	263	60	728	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.9	6.9	6.9	3.0	6.9	6.9	6.7	6.7	6.7	3.0	6.7	6.7
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1825	1902	1633	1738	1921	1633	1738	4948	1601	1772	4683	1266
Flt Permitted	0.75	1.00	1.00	0.51	1.00	1.00	0.36	1.00	1.00	0.20	1.00	1.00
Satd. Flow (perm)	1448	1902	1633	939	1921	1633	665	4948	1601	379	4683	1266
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	33	41	35	55	6	9	21	1118	263	60	728	14
RTOR Reduction (vph)	0	0	31	0	0	7	0	0	128	0	0	5
Lane Group Flow (vph)	33	41	4	55	6	2	21	1118	135	60	728	9
Heavy Vehicles (%)	0%	1%	0%	5%	0%	0%	5%	6%	2%	3%	12%	29%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases		8		7	4			2		1	6	
Permitted Phases	8		8	4		4	2		2	6		6
Actuated Green, G (s)	7.1	7.1	7.1	13.2	13.2	13.2	36.3	36.3	36.3	43.7	43.7	43.7
Effective Green, g (s)	7.1	7.1	7.1	13.2	13.2	13.2	36.3	36.3	36.3	43.7	43.7	43.7
Actuated g/C Ratio	0.10	0.10	0.10	0.19	0.19	0.19	0.51	0.51	0.51	0.62	0.62	0.62
Clearance Time (s)	6.9	6.9	6.9	3.0	6.9	6.9	6.7	6.7	6.7	3.0	6.7	6.7
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	145	191	164	210	359	305	342	2547	824	321	2902	784
v/s Ratio Prot		0.02		c0.01	0.00			c0.23		0.01	c0.16	
v/s Ratio Perm	0.02		0.00	c0.04		0.00	0.03		0.08	0.10		0.01
v/c Ratio	0.23	0.21	0.02	0.26	0.02	0.01	0.06	0.44	0.16	0.19	0.25	0.01
Uniform Delay, d1	29.2	29.1	28.6	24.1	23.4	23.3	8.6	10.7	9.1	5.6	6.0	5.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.7	1.2	0.1	1.4	0.0	0.0	0.2	0.3	0.2	0.6	0.1	0.0
Delay (s)	30.9	30.3	28.7	25.5	23.4	23.3	8.7	11.0	9.3	6.2	6.1	5.1
Level of Service	С	С	С	С	С	С	А	В	А	А	А	A
Approach Delay (s)		30.0			25.0			10.6			6.1	
Approach LOS		С			С			В			А	
Intersection Summary												
HCM 2000 Control Delay			10.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.40									
Actuated Cycle Length (s)			70.5		um of los				19.6			
Intersection Capacity Utiliza	ition		52.0%	IC	CU Level	of Service	;		А			
Analysis Period (min)			15									
c Critical Lane Group												

	4	×,	Ť	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7	ŧ	7		Ł
Traffic Volume (veh/h)	190	54	16	49	200	164
Future Volume (Veh/h)	190	54	16	49	200	164
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	190	54	16	49	200	164
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	580	16			65	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	580	16			65	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	54	95			87	
cM capacity (veh/h)	416	1066			1550	
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	
Volume Total	190	54	16	49	364	
Volume Left	190	0	0	49	200	
Volume Right	0	54	0	49	200	
cSH	416	1066	1700	1700	1550	
Volume to Capacity	0.46	0.05	0.01	0.03	0.13	
Queue Length 95th (m)	16.3	1.1	0.01	0.03	3.1	
	20.7	8.6	0.0	0.0	4.7	
Control Delay (s) Lane LOS	20.7 C	0.0 A	0.0	0.0	4.7 A	
Approach Delay (s)	18.0	A	0.0		4.7	
Approach LOS	18.0 C		0.0		4.7	
	C					
Intersection Summary						
Average Delay			9.1			
Intersection Capacity Utiliza	tion		43.6%	IC	U Level of	of Service
Analysis Period (min)			15			

107: Sandalwood F	Parkway	y East	& Hea	rt Lake	e Road						07/1	1/2019
	4	×	1	ŗ	×	۲	ľ	*	í,	*	۶.	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	٦ آ	+	1	5	+	1	٦ آ	- † †7,	٦ آ	- ++	1	
Traffic Volume (vph)	357	240	128	33	34	99	41	1642	124	973	25	
Future Volume (vph)	357	240	128	33	34	99	41	1642	124	973	25	
Lane Group Flow (vph)	357	240	128	33	34	99	41	1726	124	973	25	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	3	8		7	4		5	2	1	6		
Permitted Phases	8		8	4		4	2		6		6	
Detector Phase	3	8	8	7	4	4	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	5.0	40.0	5.0	40.0	40.0	
Minimum Split (s)	8.0	50.0	50.0	8.0	50.0	50.0	8.0	46.0	8.0	46.0	46.0	
Total Split (s)	10.0	51.0	51.0	10.0	51.0	51.0	10.0	69.0	10.0	69.0	69.0	
Total Split (%)	7.1%	36.4%	36.4%	7.1%	36.4%	36.4%	7.1%	49.3%	7.1%	49.3%	49.3%	
Yellow Time (s)	3.0	5.0	5.0	3.0	5.0	5.0	3.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	0.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	Max	None	Max	Max	
v/c Ratio	1.00	0.65	0.31	0.13	0.11	0.30	0.11	0.61	0.62	0.47	0.03	
Control Delay	87.9	52.0	8.7	29.8	40.1	10.0	9.3	19.5	28.2	16.5	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	87.9	52.0	8.7	29.8	40.1	10.0	9.3	19.5	28.2	16.5	0.0	
Queue Length 50th (m)	65.7	48.1	0.0	5.0	6.1	0.0	2.9	90.0	9.3	67.2	0.0	
Queue Length 95th (m)	#107.2	72.1	14.0	11.6	14.1	12.4	7.9	120.8	#33.5	96.5	0.0	
Internal Link Dist (m)		218.7			433.6			149.1		637.0		
Turn Bay Length (m)	200.0		150.0			85.0	150.0		190.0			
Base Capacity (vph)	357	727	684	260	734	673	386	2838	199	2076	951	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.00	0.33	0.19	0.13	0.05	0.15	0.11	0.61	0.62	0.47	0.03	
Intersection Summary												

Queues _

Intersection Summary

Cycle Length: 140 Actuated Cycle Length: 114.6

Natural Cycle: 115

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 107: Sandalwood Parkway East & Heart Lake Road

4 ₀₁ ⊁ø₂	∽ ₉₃ ≫ ₉₁
10 s 69 s	10 s 51 s
🕽 as 🔨 🖉	₩97 × 00
10 s69 s	10 s 51 s

HCM Signalized Intersection Capacity Analysis 107: Sandalwood Parkway East & Heart Lake Road

07/11/2019

		×	1	~	*	₹	7	1	7	í,	*	
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ľ	+	1	ľ	+	1	٦ ۲	++p,		٦ آ	- ††	7
Traffic Volume (vph)	357	240	128	33	34	99	41	1642	84	124	973	25
Future Volume (vph)	357	240	128	33	34	99	41	1642	84	124	973	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1807	1883	1570	1674	1902	1585	1825	5125		1789	3510	1555
Flt Permitted	0.64	1.00	1.00	0.47	1.00	1.00	0.25	1.00		0.08	1.00	1.00
Satd. Flow (perm)	1211	1883	1570	820	1902	1585	473	5125		150	3510	1555
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	357	240	128	33	34	99	41	1642	84	124	973	25
RTOR Reduction (vph)	0	0	104	0	0	83	0	3	0	0	0	11
Lane Group Flow (vph)	357	240	24	33	34	16	41	1723	0	124	973	14
Heavy Vehicles (%)	1%	2%	4%	9%	1%	3%	0%	1%	13%	2%	4%	5%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm
Protected Phases	3	8		7	4		5	2		1	6	
Permitted Phases	8		8	4		4	2			6		6
Actuated Green, G (s)	29.4	22.4	22.4	23.4	19.4	19.4	68.8	64.8		74.8	67.8	67.8
Effective Green, g (s)	29.4	22.4	22.4	23.4	19.4	19.4	68.8	64.8		74.8	67.8	67.8
Actuated g/C Ratio	0.25	0.19	0.19	0.20	0.17	0.17	0.59	0.55		0.64	0.58	0.58
Clearance Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Grp Cap (vph)	339	359	300	192	314	262	323	2833		193	2030	899
v/s Ratio Prot	c0.06	0.13		0.01	0.02		0.00	0.34		c0.04	0.28	
v/s Ratio Perm	c0.20	0 (7	0.02	0.03	0.11	0.01	0.07	0.14		c0.37	0.40	0.01
v/c Ratio	1.05	0.67	0.08	0.17	0.11	0.06	0.13	0.61		0.64	0.48	0.02
Uniform Delay, d1	43.7	44.0	38.9	38.4	41.6	41.2	10.7	17.6		13.9	14.4	10.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	63.5	6.1	0.2	0.9	0.3	0.2	0.4	1.0		9.6	0.8	0.0
Delay (s)	107.2	50.1	39.2	39.3	41.9	41.4	11.1	18.6		23.5	15.2	10.5
Level of Service	F	D	D	D	D	D	В	B		С	B	В
Approach Delay (s)		76.3			41.1			18.5 D			16.0	
Approach LOS		E			D			В			В	
Intersection Summary				<u> </u>			<u> </u>					
HCM 2000 Control Delay			29.8	Н	CM 2000	Level of	Service		С			_
HCM 2000 Volume to Capa	icity ratio		0.80	-	<u>, , , , , , , , , , , , , , , , , , , </u>	/ \			10.0			
Actuated Cycle Length (s)			117.2		um of los				19.0			
Intersection Capacity Utiliza	ation		82.1%	IC	CU Level	of Service	÷		E			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 108: Mayfield Road & Dixie Road

07/11/2019

	4	×	1	~	*	۲	Ţ	*	3	Ę.	*	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	
Lane Configurations	٦ آ	+	1	5	+	1	ľ	+++	1	٦ آ	<u> ተተጉ</u>	
Traffic Volume (vph)	36	217	350	94	31	40	212	1184	297	67	693	
Future Volume (vph)	36	217	350	94	31	40	212	1184	297	67	693	
Lane Group Flow (vph)	36	217	350	94	31	40	212	1184	297	67	697	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		8	4		4	2		2	6		
Detector Phase	8	8	8	4	4	4	5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	5.0	38.0	38.0	5.0	38.0	
Minimum Split (s)	54.0	54.0	54.0	54.0	54.0	54.0	8.0	56.0	56.0	8.0	56.0	
Total Split (s)	54.0	54.0	54.0	54.0	54.0	54.0	10.0	56.0	56.0	10.0	56.0	
Total Split (%)	45.0%	45.0%	45.0%	45.0%	45.0%	45.0%	8.3%	46.7%	46.7%	8.3%	46.7%	
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	3.0	4.6	4.6	3.0	4.6	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.3	0.0	2.3	2.3	0.0	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.9	6.9	6.9	6.9	6.9	6.9	3.0	6.9	6.9	3.0	6.9	
Lead/Lag							Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	Max	Мах	None	Max	
v/c Ratio	0.17	0.56	0.68	0.50	0.08	0.12	0.42	0.43	0.29	0.21	0.28	
Control Delay	31.2	38.3	17.8	41.3	28.9	3.9	9.1	13.8	2.5	7.6	12.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.2	38.3	17.8	41.3	28.9	3.9	9.1	13.8	2.5	7.6	12.8	
Queue Length 50th (m)	4.9	31.9	15.7	13.6	4.1	0.0	10.5	40.1	0.0	3.0	21.0	
Queue Length 95th (m)	12.2	51.3	41.2	27.2	10.5	3.9	24.4	61.8	11.8	9.0	34.3	
Internal Link Dist (m)		363.8			1219.0			1347.7			595.2	
Turn Bay Length (m)	175.0		220.0	210.0		135.0	240.0		150.0	230.0		
Base Capacity (vph)	518	965	937	472	929	752	501	2736	1033	318	2455	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.22	0.37	0.20	0.03	0.05	0.42	0.43	0.29	0.21	0.28	
ntersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 92.	1											
Natural Cycle: 120												
Control Type: Semi Act-Uno	coord											
Splits and Phases: 108: Mayfield Road & Dixie Road												
61 Xø2						Ka	4					

4 ₀₁	Xoz	N ₉₁
10 s	56 s	54 s
) _{Ø5}	¥ @5	× 28
10 s	56.5	54 s.

HCM Signalized Intersection Capacity Analysis 108: Mayfield Road & Dixie Road

	4	×	1	~	*	۲	3	*	3	í,	*	
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	- †	7	5	- †	7	5	4††	- 7	5	†† Ъ	
Traffic Volume (vph)	36	217	350	94	31	40	212	1184	297	67	693	4
Future Volume (vph)	36	217	350	94	31	40	212	1184	297	67	693	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.9	6.9	6.9	6.9	6.9	6.9	3.0	6.9	6.9	3.0	6.9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1304	1883	1601	1690	1812	1408	1674	4902	1617	1587	4592	
Flt Permitted	0.74	1.00	1.00	0.52	1.00	1.00	0.36	1.00	1.00	0.21	1.00	
Satd. Flow (perm)	1011	1883	1601	921	1812	1408	640	4902	1617	342	4592	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	36	217	350	94	31	40	212	1184	297	67	693	4
RTOR Reduction (vph)	0	0	189	0	0	32	0	0	132	0	0	0
Lane Group Flow (vph)	36	217	161	94	31	8	212	1184	165	67	697	0
Heavy Vehicles (%)	40%	2%	2%	8%	6%	16%	9%	7%	1%	15%	14%	33%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	-	8			4		5	2		1	6	
Permitted Phases	8		8	4		4	2		2	6		
Actuated Green, G (s)	19.0	19.0	19.0	19.0	19.0	19.0	58.4	51.4	51.4	55.4	49.9	
Effective Green, g (s)	19.0	19.0	19.0	19.0	19.0	19.0	58.4	51.4	51.4	55.4	49.9	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.20	0.20	0.63	0.55	0.55	0.60	0.54	
Clearance Time (s)	6.9	6.9	6.9	6.9	6.9	6.9	3.0	6.9	6.9	3.0	6.9	_
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	207	385	328	188	371	288	481	2718	896	278	2471	
v/s Ratio Prot		c0.12	0.4.0	0.4.0	0.02	0.01	c0.03	0.24	0.40	0.01	0.15	
v/s Ratio Perm	0.04	0 5 (0.10	0.10	0.00	0.01	c0.24		0.10	0.13	0.00	
v/c Ratio	0.17	0.56	0.49	0.50	0.08	0.03	0.44	0.44	0.18	0.24	0.28	
Uniform Delay, d1	30.4	33.1	32.6	32.6	29.8	29.5	7.3	12.1	10.2	8.0	11.6	_
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.8	3.1	2.4	4.3	0.2	0.1	1.3	0.5	0.5	0.9	0.3	_
Delay (s)	31.2	36.2	35.0	37.0	30.0	29.6	8.6	12.6	10.7	8.9	11.9 D	
Level of Service	С	D	С	D	C	С	А	B	В	А	B	
Approach Delay (s)		35.2			33.9			11.8 D			11.7 D	
Approach LOS		D			С			В			В	
Intersection Summary			17.0		014 0000		<u> </u>					
HCM 2000 Control Delay			17.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.48	2					1/ 0			
Actuated Cycle Length (s)	P		92.7		um of los				16.8			
Intersection Capacity Utilizat	tion		85.4%	IC	CU Level	of Service	Ś		E			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 109: Countryside Drive & Dixie Road

	æ	×	~	•	₹	Ţ	*	3	Ę.	*	*	
Lane Group	SEL	SET	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	<u>۲</u>	Te.	<u>٦</u>	- +	- 7	<u>۲</u>	- 11	- 7	<u>۲</u>	- ++	- 7	
Traffic Volume (vph)	133	390	38	193	112	9	234	105	48	153	34	
Future Volume (vph)	133	390	38	193	112	9	234	105	48	153	34	
Lane Group Flow (vph)	133	398	38	193	112	9	234	105	48	153	34	
Turn Type	Perm	NA	Perm	NA	custom	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		1		1			2			2		
Permitted Phases	1		1		2	2		2	2		2	
Detector Phase	1	1	1	1	2	2	2	2	2	2	2	
Switch Phase												
Vinimum Initial (s)	30.0	30.0	30.0	30.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
Minimum Split (s)	36.6	36.6	36.6	36.6	35.2	35.2	35.2	35.2	35.2	35.2	35.2	
Total Split (s)	53.6	53.6	53.6	53.6	35.2	35.2	35.2	35.2	35.2	35.2	35.2	
Total Split (%)	60.4%	60.4%	60.4%	60.4%	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.4	2.4	2.4	2.4	3.2	3.2	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.6	6.6	6.6	6.6	7.2	7.2	7.2	7.2	7.2	7.2	7.2	
Lead/Lag	Lead	Lead	Lead	Lead	Lag	Lag	Lag	Lag	Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	None	None	None	None	None	None	None	
v/c Ratio	0.18	0.35	0.06	0.17	0.28	0.03	0.30	0.25	0.21	0.20	0.09	
Control Delay	8.6	9.4	8.0	8.0	6.9	23.1	26.3	6.9	26.6	25.1	6.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	8.6	9.4	8.0	8.0	6.9	23.1	26.3	6.9	26.6	25.1	6.4	
Queue Length 50th (m)	6.6	22.1	1.7	9.4	0.0	1.0	14.0	0.0	5.4	8.9	0.0	
Queue Length 95th (m)	18.4	50.0	6.7	23.7	10.3	4.1	22.2	10.0	13.0	15.4	4.6	
Internal Link Dist (m)		1219.0		1436.4			1345.4			805.1		
Turn Bay Length (m)	150.0		190.0			150.0		140.0	80.0		150.0	
Base Capacity (vph)	723	1145	591	1147	620	456	1325	633	401	1325	608	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.18	0.35	0.06	0.17	0.18	0.02	0.18	0.17	0.12	0.12	0.06	
Intersection Summary												
Cycle Length: 88.8												
Actuated Cycle Length: 77.4												
Natural Cycle: 75												
Control Type: Semi Act-Unco	ord											
Splits and Phases: 109: Co	nuntrusida	e Drive &	Divie Ro:	he								

K.₈₂

Splits and Phases: 109: Countryside Drive & Dixie Road

×₀₁

HCM Signalized Intersection Capacity Analysis 109: Countryside Drive & Dixie Road

07/1	1/2019
0111	1/2017

	4	×	1	~	×	۲	7	*	3	í,	*	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦ ۲	¥,		٦ آ	- †	1	٦ آ	+ †	۳.	٦ آ	- † †	7
Traffic Volume (vph)	133	390	8	38	193	112	9	234	105	48	153	34
Future Volume (vph)	133	390	8	38	193	112	9	234	105	48	153	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6		6.6	6.6	7.2	7.2	7.2	7.2	7.2	7.2	7.2
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1772	1878		1824	1883	1512	1823	3650	1560	1733	3650	1598
Flt Permitted	0.64	1.00		0.51	1.00	1.00	0.65	1.00	1.00	0.61	1.00	1.00
Satd. Flow (perm)	1187	1878		971	1883	1512	1257	3650	1560	1106	3650	1598
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	133	390	8	38	193	112	9	234	105	48	153	34
RTOR Reduction (vph)	0	1	0	0	0	88	0	0	83	0	0	27
Lane Group Flow (vph)	133	397	0	38	193	24	9	234	22	48	153	7
Confl. Peds. (#/hr)			1	1			1		5	5		1
Heavy Vehicles (%)	3%	2%	0%	0%	2%	8%	0%	0%	3%	5%	0%	0%
Turn Type	Perm	NA		Perm	NA	custom	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		1			1			2			2	
Permitted Phases	1			1		2	2		2	2		2
Actuated Green, G (s)	47.2	47.2		47.2	47.2	16.4	16.4	16.4	16.4	16.4	16.4	16.4
Effective Green, g (s)	47.2	47.2		47.2	47.2	16.4	16.4	16.4	16.4	16.4	16.4	16.4
Actuated g/C Ratio	0.61	0.61		0.61	0.61	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Clearance Time (s)	6.6	6.6		6.6	6.6	7.2	7.2	7.2	7.2	7.2	7.2	7.2
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	723	1145		592	1148	320	266	773	330	234	773	338
v/s Ratio Prot		c0.21			0.10			c0.06			0.04	
v/s Ratio Perm	0.11			0.04		0.02	0.01		0.01	0.04		0.00
v/c Ratio	0.18	0.35		0.06	0.17	0.07	0.03	0.30	0.07	0.21	0.20	0.02
Uniform Delay, d1	6.6	7.5		6.1	6.6	24.4	24.2	25.7	24.4	25.1	25.1	24.1
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	0.8		0.2	0.3	0.2	0.1	0.5	0.2	0.9	0.3	0.1
Delay (s)	7.2	8.3		6.3	6.9	24.6	24.3	26.1	24.6	26.0	25.4	24.2
Level of Service	А	A		А	A	С	С	С	С	С	С	С
Approach Delay (s)		8.0			12.6			25.6			25.3	
Approach LOS		А			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			16.1	Н	CM 200	Clevel of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.34									
Actuated Cycle Length (s)			77.4			st time (s)			13.8			
Intersection Capacity Utiliza	ation		95.0%	IC	CU Level	of Service	<u>;</u>		F			
Analysis Period (min)			15									
c Critical Lano Croup												

Queues 110: Sandalwood Parkway East & Dixie Road

	4	×	1	~	×	۲	Ţ	1	4	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT
Lane Configurations	ካ	- 11	7	ካ	- ††	7	<u>آ</u>	- ##%	<u>۲</u>	<u>††₽,</u>
Traffic Volume (vph)	55	509	279	78	277	68	206	1360	155	957
Future Volume (vph)	55	509	279	78	277	68	206	1360	155	957
Lane Group Flow (vph)	55	509	279	78	277	68	206	1552	155	1057
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		2		1	6		3	8	7	4
Permitted Phases	2		2	6		6	8		4	
Detector Phase	2	2	2	1	6	6	3	8	7	4
Switch Phase										
Minimum Initial (s)	39.0	39.0	39.0	5.0	39.0	39.0	5.0	39.7	5.0	39.7
Vinimum Split (s)	46.0	46.0	46.0	8.0	46.0	46.0	8.0	47.4	8.0	47.4
Total Split (s)	51.0	51.0	51.0	10.0	61.0	61.0	12.0	59.0	20.0	67.0
Total Split (%)	36.4%	36.4%	36.4%	7.1%	43.6%	43.6%	8.6%	42.1%	14.3%	47.9%
Yellow Time (s)	4.6	4.6	4.6	3.0	4.6	4.6	3.0	4.0	3.0	4.0
All-Red Time (s)	2.4	2.4	2.4	0.0	2.4	2.4	0.0	3.7	0.0	3.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	3.0	7.0	7.0	3.0	7.7	3.0	7.7
Lead/Lag	Lag	Lag	Lag	Lead	7.0	7.0	Lead	Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	Max	None	Max
v/c Ratio	0.18	0.50	0.47	0.27	0.22	0.12	0.70	0.77	0.65	0.48
Control Delay	38.1	42.0	10.6	28.6	30.4	4.3	30.8	37.8	38.1	27.3
3	0.0	42.0	0.0	20.0	0.0	4.3 0.0	30.8 0.0	0.0	0.0	0.0
Queue Delay									38.1	
Total Delay	38.1	42.0	10.6	28.6	30.4	4.3	30.8	37.8		27.3
Queue Length 50th (m)	10.2	54.8	8.3	12.1	24.6	0.0	24.1	117.8	21.0	65.4
Queue Length 95th (m)	20.6	70.8	30.6	22.1	34.5	6.6	#39.4	140.5	42.0	77.2
Internal Link Dist (m)	100.0	1436.4	100.0	105.0	503.2	105.0	150.0	672.7	100.0	108.5
Turn Bay Length (m)	120.0		120.0	125.0	1000	125.0	150.0	0000	130.0	0000
Base Capacity (vph)	339	1144	645	290	1390	643	294	2028	277	2208
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.44	0.43	0.27	0.20	0.11	0.70	0.77	0.56	0.48
Intersection Summary										
Cycle Length: 140										
Actuated Cycle Length: 135										
Natural Cycle: 110										
Control Type: Semi Act-Unc	coord									
# 95th percentile volume e		apacity, qu	Leue may	be longe	er.					
Queue shown is maximu			,	3						
		,								
Splits and Phases: 110: S	Sandalwoo	d Parkwa	y East &	Dixie Roa	nd	-				
En Mar				1 1		Car .				
▶ 01 × 02				12	03	¹¹ Ø1				
10 5 51 5				12.5	67	5				

07

7 28

HCM Signalized Intersection Capacity Analysis 110: Sandalwood Parkway East & Dixie Road

		×	1	~	*	₹	7	1	3	Ę.	*	•
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	+ †	1	5	- ††	1	5	++1%		5	ተተቡ	
Traffic Volume (vph)	55	509	279	78	277	68	206	1360	192	155	957	100
Future Volume (vph)	55	509	279	78	277	68	206	1360	192	155	957	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0	3.0	7.0	7.0	3.0	7.7		3.0	7.7	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		1.00	0.91	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.99		1.00	1.00	
Flpb, ped/bikes	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1705	3510	1501	1747	3476	1487	1754	5002		1755	5007	
Flt Permitted	0.58	1.00	1.00	0.32	1.00	1.00	0.22	1.00		0.07	1.00	
Satd. Flow (perm)	1044	3510	1501	594	3476	1487	406	5002		129	5007	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	55	509	279	78	277	68	206	1360	192	155	957	100
RTOR Reduction (vph)	0	0	166	0	0	43	0	13	0	0	9	0
Lane Group Flow (vph)	55	509	113	78	277	25	206	1539	0	155	1048	0
Confl. Peds. (#/hr)	33		33	33		33	11		32	32		11
Heavy Vehicles (%)	4%	4%	3%	4%	5%	4%	4%	2%	4%	4%	3%	3%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	39.0	39.0	39.0	49.0	49.0	49.0	63.4	54.4		71.3	59.3	
Effective Green, g (s)	39.0	39.0	39.0	49.0	49.0	49.0	63.4	54.4		71.3	59.3	
Actuated g/C Ratio	0.29	0.29	0.29	0.36	0.36	0.36	0.47	0.40		0.53	0.44	
Clearance Time (s)	7.0	7.0	7.0	3.0	7.0	7.0	3.0	7.7		3.0	7.7	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lane Grp Cap (vph)	301	1014	433	275	1261	539	280	2015		235	2199	
v/s Ratio Prot		c0.15		c0.01	0.08		c0.05	c0.31		c0.07	0.21	
v/s Ratio Perm	0.05		0.08	0.09		0.02	0.30			0.28		
v/c Ratio	0.18	0.50	0.26	0.28	0.22	0.05	0.74	0.76		0.66	0.48	
Uniform Delay, d1	36.0	39.9	36.9	29.3	29.8	27.9	22.4	34.8		29.4	26.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.8	0.7	1.2	0.2	0.1	11.6	2.8		8.7	0.7	
Delay (s)	36.6	40.7	37.6	30.5	30.0	27.9	34.0	37.6		38.1	27.6	
Level of Service	D	D	D	С	С	С	С	D		D	С	
Approach Delay (s)		39.4			29.7			37.2			28.9	
Approach LOS		D			С			D			С	
Intersection Summary												
HCM 2000 Control Delay			34.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.64									
Actuated Cycle Length (s)	-		135.0	S	um of los	t time (s)			20.7			
Intersection Capacity Utilization	ation		124.9%		U Level		e		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	ì	*	Ť	Ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			Ł	Ę.	
Traffic Volume (veh/h)	1	20	46	64	333	21
Future Volume (Veh/h)	1	20	46	64	333	21
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	20	46	64	333	21
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	500	344	354			
vC1, stage 1 conf vol	000	011	001			
vC2, stage 2 conf vol						
vCu, unblocked vol	500	344	354			
tC, single (s)	6.4	6.3	4.1			
tC, 2 stage (s)	011	010				
tF (s)	3.5	3.4	2.2			
p0 queue free %	100	97	96			
cM capacity (veh/h)	514	688	1210			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total						
	21	110	354			
Volume Left	1	46	0			
Volume Right	20	0	21			
cSH Maluma ta Canaaitu	677	1210	1700			
Volume to Capacity	0.03	0.04	0.21			
Queue Length 95th (m)	0.7	0.8	0.0			
Control Delay (s)	10.5	3.6	0.0			
Lane LOS	B	A	0.0			
Approach Delay (s)	10.5	3.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			1.3			
Intersection Capacity Utiliz	ation		38.0%	IC	CU Level c	f Service
Analysis Period (min)			15			

Queues
101: Mayfield Road & Kennedy Road North/Kennedy Road

	-	\mathbf{x}	~	×	₹	Ţ	1	í,	*	۰.	
Lane Group	SEL	SET	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	ኘ	ą,	<u>۲</u>	- +	1	<u>آ</u>	±	5	- ++	7	
Traffic Volume (vph)	210	113	92	145	110	184	588	147	951	361	
Future Volume (vph)	210	113	92	145	110	184	588	147	951	361	
Lane Group Flow (vph)	210	231	92	145	110	184	645	147	951	361	
Turn Type	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases	3	4		4			2		2		
Permitted Phases	4		4		4	2		2		2	
Detector Phase	3	4	4	4	4	2	2	2	2	2	
Switch Phase											
Minimum Initial (s)	5.0	8.0	8.0	8.0	8.0	31.3	31.3	31.3	31.3	31.3	
Minimum Split (s)	8.0	31.8	31.8	31.8	31.8	37.6	37.6	37.6	37.6	37.6	
Total Split (s)	25.0	33.0	33.0	33.0	33.0	77.0	77.0	77.0	77.0	77.0	
Total Split (%)	18.5%	24.4%	24.4%	24.4%	24.4%	57.0%	57.0%	57.0%	57.0%	57.0%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	0.0	2.8	2.8	2.8	2.8	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.8	6.8	6.8	6.8	6.3	6.3	6.3	6.3	6.3	
Lead/Lag	Lead	Lag	Lag	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	Max	Max	Max	Мах	Max	
v/c Ratio	0.44	0.71	0.77	0.45	0.30	0.72	0.33	0.37	0.47	0.34	
Control Delay	31.5	54.9	89.1	51.9	10.3	41.6	16.2	20.7	18.5	2.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.5	54.9	89.1	51.9	10.3	41.6	16.2	20.7	18.5	2.5	
Queue Length 50th (m)	34.2	43.0	20.3	30.2	0.0	31.1	41.2	18.8	68.6	0.0	
Queue Length 95th (m)	51.8	70.5	#44.8	50.2	14.4	#76.4	58.7	37.6	93.8	13.3	
Internal Link Dist (m)		493.9		1200.7			613.8		728.2		
Turn Bay Length (m)	100.0				100.0	90.0		150.0		130.0	
Base Capacity (vph)	521	389	146	396	424	255	1947	394	2012	1067	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.59	0.63	0.37	0.26	0.72	0.33	0.37	0.47	0.34	
Intersection Summary											

Intersection Summary

Cycle Length: 135

Actuated Cycle Length: 126.3 Natural Cycle: 90

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

Splits and Phases: 101: Mayfield Road & Kennedy Road North/Kennedy Road

¥ 22		⊀ Ø3	×31	
77 s	25 s		35	

HCM Signalized Intersection Capac	ity Analysis
101: Mayfield Road & Kennedy Roa	ad North/Kennedy Road

07/11/2019

		×	2	Ļ	*	۲	ľ	*	ľ	í,	*	۰.
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	<u>آ</u>	F,		<u>٦</u>	- †	- T	5	- †₽		5	- 11	- 7
Traffic Volume (vph)	210	113	118	92	145	110	184	588	57	147	951	361
Future Volume (vph)	210	113	118	92	145	110	184	588	57	147	951	361
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		6.8	6.8	6.8	6.3	6.3		6.3	6.3	6.3
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		0.99	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.92		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1807	1736		1813	1902	1617	1825	3454		1807	3579	1617
Flt Permitted	0.59	1.00		0.37	1.00	1.00	0.24	1.00		0.37	1.00	1.00
Satd. Flow (perm)	1125	1736		703	1902	1617	456	3454		703	3579	1617
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	210	113	118	92	145	110	184	588	57	147	951	361
RTOR Reduction (vph)	0	29	0	0	0	91	0	5	0	0	0	158
Lane Group Flow (vph)	210	202	0	92	145	19	184	640	0	147	951	203
Confl. Peds. (#/hr)			7	7								
Heavy Vehicles (%)	1%	0%	2%	0%	1%	1%	0%	4%	7%	1%	2%	1%
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	3	4			4			2			2	
Permitted Phases	4			4		4	2			2		2
Actuated Green, G (s)	39.1	21.5		21.5	21.5	21.5	71.0	71.0		71.0	71.0	71.0
Effective Green, g (s)	39.1	21.5		21.5	21.5	21.5	71.0	71.0		71.0	71.0	71.0
Actuated g/C Ratio	0.31	0.17		0.17	0.17	0.17	0.56	0.56		0.56	0.56	0.56
Clearance Time (s)	3.0	6.8		6.8	6.8	6.8	6.3	6.3		6.3	6.3	6.3
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Grp Cap (vph)	443	295		119	324	275	256	1943		395	2013	909
v/s Ratio Prot	c0.07	0.12			0.08			0.19			0.27	
v/s Ratio Perm	0.08			c0.13		0.01	c0.40			0.21		0.13
v/c Ratio	0.47	0.68		0.77	0.45	0.07	0.72	0.33		0.37	0.47	0.22
Uniform Delay, d1	34.0	49.2		50.0	47.0	43.9	20.3	14.8		15.3	16.4	13.8
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.7	8.2		29.9	2.1	0.2	16.0	0.5		2.7	0.8	0.6
Delay (s)	35.7	57.4		79.9	49.1	44.2	36.2	15.3		17.9	17.2	14.4
Level of Service	D	E		E	D	D	D	В		В	В	В
Approach Delay (s)		47.1			55.7			19.9			16.6	
Approach LOS		D			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			26.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.69									
Actuated Cycle Length (s)			126.2	S	um of los	t time (s)			16.1			
Intersection Capacity Utiliz	ation		9 5. 9 %	IC	CU Level	of Service	;		F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues	
103: Sandalwood Parkway East & Kennedy Road North	

		\mathbf{N}	~	•	7	1	<u> </u>	*	
Lane Group	SEL	SET	NWL	NWT	NEL	NET	SWL	SWT	
Lane Configurations	5	†1 ≽	<u>آ</u>	† Ъ	<u>آ</u>	† Ъ	5	±,	
Traffic Volume (vph)	289	271	266	418	13	975	80	1459	
Future Volume (vph)	289	271	266	418	13	975	80	1459	
Lane Group Flow (vph)	289	299	266	541	13	1073	80	1702	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	pm+pt	NA	
Protected Phases	3	8	7	4		2	1	6	
Permitted Phases	8		4		2		6		
Detector Phase	3	8	7	4	2	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	8.0	5.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	40.0	8.0	40.0	36.0	36.0	8.0	36.0	
Total Split (s)	15.0	45.0	15.0	45.0	65.0	65.0	10.0	75.0	
Total Split (%)	11.1%	33.3%	11.1%	33.3%	48.1%	48.1%	7.4%	55.6%	
Yellow Time (s)	3.0	4.0	3.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	2.0	0.0	2.0	2.0	2.0	0.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.0	3.0	6.0	6.0	6.0	3.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	None	None	None	None	None	None	None	
v/c Ratio	0.98	0.39	0.63	0.70	0.21	0.62	0.31	0.87	
Control Delay	80.8	40.3	36.2	45.8	30.9	25.2	15.1	29.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	80.8	40.3	36.2	45.8	30.9	25.2	15.1	29.2	
Queue Length 50th (m)	~49.6	29.2	43.6	55.7	1.6	88.4	7.1	155.1	
Queue Length 95th (m)	#86.5	41.2	64.3	73.0	7.3	121.4	15.4	214.2	
Internal Link Dist (m)		1159.4		354.2		240.5		84.0	
Turn Bay Length (m)	70.0		100.0		75.0		85.0		
Base Capacity (vph)	295	1164	423	1173	64	1789	258	2088	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.98	0.26	0.63	0.46	0.20	0.60	0.31	0.82	
Intersection Summary									
Cycle Longth, 125									

Cycle Length: 135 Actuated Cycle Length: 118.1

Natural Cycle: 95

Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 103: Sandalwood Parkway East & Kennedy Road North

HCM Signalized Intersecti	on Capacity Anal	lysis
103: Sandalwood Parkway	y East & Kenned	y Road North

07/11/2019

	-	×	1	~	*	۲	7	1	3	ų,	*	۰.
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	t † βγ		ሻ	† 7≽		ሻ	ta an		5	† 7≽	
Traffic Volume (vph)	289	271	28	266	418	123	13	975	98	80	1459	243
Future Volume (vph)	289	271	28	266	418	123	13	975	98	80	1459	243
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		3.0	6.0		6.0	6.0		3.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.99		1.00	0.97		1.00	0.99		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1772	3479		1825	3464		1738	3542		1789	3527	
Flt Permitted	0.25	1.00		0.51	1.00		0.07	1.00		0.16	1.00	
Satd. Flow (perm)	467	3479		971	3464		128	3542		294	3527	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	289	271	28	266	418	123	13	975	98	80	1459	243
RTOR Reduction (vph)	0	6	0	0	22	0	0	5	0	0	9	0
Lane Group Flow (vph)	289	293	0	266	519	0	13	1068	0	80	1693	0
Heavy Vehicles (%)	3%	1%	27%	0%	2%	1%	5%	1%	8%	2%	1%	3%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	3	8		7	4			2		1	6	
Permitted Phases	8			4			2			6		
Actuated Green, G (s)	37.9	25.8		37.9	25.8		57.4	57.4		65.8	65.8	
Effective Green, g (s)	37.9	25.8		37.9	25.8		57.4	57.4		65.8	65.8	
Actuated g/C Ratio	0.32	0.22		0.32	0.22		0.48	0.48		0.55	0.55	
Clearance Time (s)	3.0	6.0		3.0	6.0		6.0	6.0		3.0	6.0	
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Grp Cap (vph)	282	756		397	752		61	1712		230	1955	
v/s Ratio Prot	c0.10	0.08		0.07	0.15			0.30		0.02	c0.48	
v/s Ratio Perm	c0.22			0.15			0.10			0.18		
v/c Ratio	1.02	0.39		0.67	0.69		0.21	0.62		0.35	0.87	
Uniform Delay, d1	36.4	39.7		32.6	42.8		17.6	22.7		15.5	22.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	60.1	0.7		5.7	3.5		3.6	1.0		1.9	4.7	
Delay (s)	96.5	40.4		38.3	46.2		21.3	23.7		17.4	27.4	
Level of Service	F	D		D	D		С	С		В	С	
Approach Delay (s)		68.0			43.6			23.6			26.9	
Approach LOS		E			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			34.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.95									
Actuated Cycle Length (s)			118.7		um of los				18.0			
Intersection Capacity Utiliza	ation		104.6%	IC	CU Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 104: Mayfield Road & Heart Lake Road

07/11/2019	07/	11/	20	19
------------	-----	-----	----	----

	4	×	1	~	*	۲	Ţ	*	7	í,	*	۰.
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	- †	- T	- ከ	- †	- T	5	+++	- T	<u>آ</u>	444	۳.
Traffic Volume (vph)	36	18	20	260	27	16	22	842	93	14	1087	31
Future Volume (vph)	36	18	20	260	27	16	22	842	93	14	1087	31
Lane Group Flow (vph)	36	18	20	260	27	16	22	842	93	14	1087	31
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases		8		7	4			2		1	6	
Permitted Phases	8		8	4		4	2		2	6		6
Detector Phase	8	8	8	7	4	4	2	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	12.0	12.0	12.0	5.0	12.0	12.0
Minimum Split (s)	37.5	37.5	37.5	9.5	37.5	37.5	33.5	33.5	33.5	9.5	33.5	33.5
Total Split (s)	41.0	41.0	41.0	9.5	50.0	50.0	76.0	76.0	76.0	9.5	85.0	85.0
Total Split (%)	30.1%	30.1%	30.1%	7.0%	36.8%	36.8%	55.9%	55.9%	55. 9 %	7.0%	62.5%	62.5%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lag	Lead			Lag	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes	Yes		
Recall Mode	None	None	None	None	None	None	Min	Min	Min	None	Min	Min
v/c Ratio	0.12	0.05	0.05	0.65	0.05	0.03	0.10	0.39	0.12	0.04	0.44	0.04
Control Delay	20.9	20.2	0.2	25.2	12.9	1.0	12.1	10.3	3.6	7.6	9.0	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.9	20.2	0.2	25.2	12.9	1.0	12.1	10.3	3.6	7.6	9.0	1.9
Queue Length 50th (m)	2.4	1.2	0.0	14.1	1.3	0.0	1.0	15.4	0.0	0.6	21.0	0.0
Queue Length 95th (m)	9.9	6.0	0.0	#50.7	6.3	0.8	5.5	32.8	6.7	2.6	30.8	1.9
Internal Link Dist (m)		409.0			470.2			258.4			1347.7	
Turn Bay Length (m)	215.0		130.0	210.0		110.0	180.0		280.0	225.0		225.0
Base Capacity (vph)	1135	1488	1269	399	1751	1370	468	4812	1541	362	5092	1601
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.01	0.02	0.65	0.02	0.01	0.05	0.17	0.06	0.04	0.21	0.02
Intersection Summary												

Intersection Summary

Cycle Length: 136

Actuated Cycle Length: 46.3

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

Splits and Phases: 104: Mayfield Road & Heart Lake Road

401 X02	×01
8.5 s 76 s	50 s
× 426	∽ ø7 × ∞
85 s	9.5 s 41 s

HCM Signalized Intersection Capacity Analysis 104: Mayfield Road & Heart Lake Road

07/1	1/2019
0111	1/2017

	4	×	1	~	*	۲	Ţ	*	7	í,	*	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	- †	1	5	- †	1	5	4††	1	ካ	444	7
Traffic Volume (vph)	36	18	20	260	27	16	22	842	93	14	1087	31
Future Volume (vph)	36	18	20	260	27	16	22	842	93	14	1087	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1706	1847	1555	1807	1921	1498	1772	4812	1541	1738	5092	1601
Flt Permitted	0.78	1.00	1.00	0.42	1.00	1.00	0.25	1.00	1.00	0.24	1.00	1.00
Satd. Flow (perm)	1408	1847	1555	793	1921	1498	467	4812	1541	444	5092	1601
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	36	18	20	260	27	16	22	842	93	14	1087	31
RTOR Reduction (vph)	0	0	18	0	0	11	0	0	55	0	0	15
Lane Group Flow (vph)	36	18	2	260	27	5	22	842	38	14	1087	16
Heavy Vehicles (%)	7%	4%	5%	1%	0%	9%	3%	9%	6%	5%	3%	2%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases		8		7	4			2		1	6	
Permitted Phases	8		8	4		4	2		2	6		6
Actuated Green, G (s)	5.1	5.1	5.1	16.6	16.6	16.6	21.0	21.0	21.0	26.2	26.2	26.2
Effective Green, g (s)	5.1	5.1	5.1	16.6	16.6	16.6	21.0	21.0	21.0	26.2	26.2	26.2
Actuated g/C Ratio	0.10	0.10	0.10	0.32	0.32	0.32	0.41	0.41	0.41	0.51	0.51	0.51
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	138	181	153	391	615	480	189	1950	624	242	2575	809
v/s Ratio Prot		0.01		c0.09	0.01			0.17		0.00	c0.21	
v/s Ratio Perm	0.03		0.00	c0.12		0.00	0.05		0.02	0.03		0.01
v/c Ratio	0.26	0.10	0.01	0.66	0.04	0.01	0.12	0.43	0.06	0.06	0.42	0.02
Uniform Delay, d1	21.6	21.3	21.1	14.2	12.1	12.0	9.6	11.1	9.4	6.8	8.0	6.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.1	0.5	0.1	5.6	0.1	0.0	0.6	0.3	0.1	0.2	0.2	0.0
Delay (s)	23.7	21.8	21.1	19.8	12.2	12.0	10.2	11.4	9.5	7.0	8.3	6.4
Level of Service	С	С	С	В	B	В	В	B	A	А	A	А
Approach Delay (s)		22.5			18.7			11.2			8.2	
Approach LOS		С			В			В			A	
Intersection Summary												
HCM 2000 Control Delay			11.1	Н	CM 2000	Level of S	Service		В			_
HCM 2000 Volume to Capa	city ratio		0.63	-	<u></u>				40.0			
Actuated Cycle Length (s)			51.8		um of losi				18.0			_
Intersection Capacity Utiliza	ition		53.3%	IC	U Level	of Service	:		А			
Analysis Period (min)			15									
c Critical Lane Group												

	4	×,	Ť	1	ŕ	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7	ŧ	7		Ł
Traffic Volume (veh/h)	138	202	101	150	50	75
Future Volume (Veh/h)	138	202	101	150	50	75
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	138	202	101	150	50	75
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	276	101			251	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	276	101			251	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	80	79			96	
cM capacity (veh/h)	689	960			1314	
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	
Volume Total	138	202	101	150	125	
Volume Left	138	0	0	0	50	
Volume Right	0	202	0	150	0	
cSH	689	960	1700	1700	1314	
Volume to Capacity	0.20	0.21	0.06	0.09	0.04	
Queue Length 95th (m)	5.2	5.6	0.0	0.0	0.8	
Control Delay (s)	11.5	9.7	0.0	0.0	3.3	
Lane LOS	В	A			A	
Approach Delay (s)	10.5		0.0		3.3	
Approach LOS	В					
Intersection Summary						
Average Delay			5.6			
Intersection Capacity Utiliz	vation		27.7%	IC		of Service
Analysis Period (min)			15	10		
			10			

	f	Ł	Ť	1	ŕ	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	5	7	ŧ			ŧ	
Traffic Volume (veh/h)	78	2	298	0	0	308	
Future Volume (Veh/h)	78	2	298	0	0	308	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	78	2	298	0	0	308	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			243				
pX, platoon unblocked	0.98	0.98			0.98		
vC, conflicting volume	606	298			298		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	588	274			274		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	83	100			100		
cM capacity (veh/h)	462	750			1275		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1			
Volume Total	78	2	298	308			
Volume Left	78	0	0	0			
Volume Right	0	2	0	0			
cSH	462	750	1700	1700			
Volume to Capacity	0.17	0.00	0.18	0.18			
Queue Length 95th (m)	4.2	0.1	0.0	0.0			
Control Delay (s)	14.4	9.8	0.0	0.0			
Lane LOS	В	А					
Approach Delay (s)	14.3		0.0	0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			1.7				
Intersection Capacity Utiliza	ation		27.2%	IC	U Level	of Service	
Analysis Period (min)			15				
			15				

107: Sandalwood Parkway East & Heart Lake Road 07/11/2019												
	4	×	1	~	*	۲	7	1	4	*	۰.	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	5	+	1	5	+	1	5		5	- 11	1	
Traffic Volume (vph)	177	84	125	71	91	97	98	1224	122	1719	109	
Future Volume (vph)	177	84	125	71	91	97	98	1224	122	1719	109	
Lane Group Flow (vph)	177	84	125	71	91	97	98	1276	122	1719	109	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	3	8		7	4		5	2	1	6		
Permitted Phases	8		8	4		4	2		6		6	
Detector Phase	3	8	8	7	4	4	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	5.0	40.0	5.0	40.0	40.0	
Minimum Split (s)	8.0	50.0	50.0	8.0	50.0	50.0	8.0	46.0	8.0	46.0	46.0	
Total Split (s)	10.0	51.0	51.0	10.0	51.0	51.0	10.0	64.0	10.0	64.0	64.0	
Total Split (%)	7.4%	37.8%	37.8%	7.4%	37.8%	37.8%	7.4%	47.4%	7.4%	47.4%	47.4%	
Yellow Time (s)	3.0	5.0	5.0	3.0	5.0	5.0	3.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	0.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes										
Recall Mode	None	Max	None	Max	Max							
v/c Ratio	0.56	0.33	0.38	0.23	0.40	0.36	0.49	0.44	0.38	0.85	0.12	
Control Delay	40.2	45.2	11.1	31.9	47.5	12.4	19.2	13.9	9.4	24.3	4.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.2	45.2	11.1	31.9	47.5	12.4	19.2	13.9	9.4	24.3	4.3	
Queue Length 50th (m)	27.1	14.5	0.0	10.2	15.8	0.0	5.3	47.1	6.6	131.3	2.2	
Queue Length 95th (m)	44.6	27.9	14.6	20.6	29.7	13.0	17.9	61.5	13.3	175.6	9.5	
Internal Link Dist (m)		218.7			433.6			149.1		637.0		
Turn Bay Length (m)	200.0		150.0			85.0	150.0		190.0			
Base Capacity (vph)	316	803	754	309	819	732	200	2871	317	2033	936	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.56	0.10	0.17	0.23	0.11	0.13	0.49	0.44	0.38	0.85	0.12	
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 103	.1											
Natural Cycle: 135												

Queues 107: Sandalwood Parkway East & Heart Lake Road

07/11/2019

Splits and Phases: 107: Sandalwood Parkway East & Heart Lake Road

Control Type: Semi Act-Uncoord

(₀₁	V 32	- ¹ 03 No1
10 s	S4s	10 s 51 s
) ₀₅	× 26	₩07 × 00
10 s	54 s	10.s 51.s

HCM Signalized Intersection Capacity Analysis 107: Sandalwood Parkway East & Heart Lake Road

07/11/2019

	4	×	1	~	*	۲	3	1	ſ	¢,	*	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	- †	۳.	5	- †	۳.	ሻ	++1%		5	- 11	- T
Traffic Volume (vph)	177	84	125	71	91	97	98	1224	52	122	1719	109
Future Volume (vph)	177	84	125	71	91	97	98	1224	52	122	1719	109
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1807	1883	1601	1690	1921	1585	1807	5098		1825	3614	1601
Flt Permitted	0.63	1.00	1.00	0.70	1.00	1.00	0.07	1.00		0.17	1.00	1.00
Satd. Flow (perm)	1197	1883	1601	1250	1921	1585	131	5098		326	3614	1601
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	177	84	125	71	91	97	98	1224	52	122	1719	109
RTOR Reduction (vph)	0	0	108	0	0	85	0	3	0	0	0	36
Lane Group Flow (vph)	177	84	17	71	91	12	98	1273	0	122	1719	73
Heavy Vehicles (%)	1%	2%	2%	8%	0%	3%	1%	2%	8%	0%	1%	2%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm
Protected Phases	3	8		7	4		5	2		1	6	
Permitted Phases	8		8	4		4	2			6		6
Actuated Green, G (s)	21.2	14.2	14.2	18.4	12.8	12.8	65.0	58.0		65.0	58.0	58.0
Effective Green, g (s)	21.2	14.2	14.2	18.4	12.8	12.8	65.0	58.0		65.0	58.0	58.0
Actuated g/C Ratio	0.20	0.14	0.14	0.18	0.12	0.12	0.63	0.56		0.63	0.56	0.56
Clearance Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Grp Cap (vph)	285	257	219	245	236	195	195	2848		305	2019	894
v/s Ratio Prot	c0.04	0.04		0.02	0.05		c0.03	0.25		0.03	c0.48	
v/s Ratio Perm	c0.08	0.00	0.01	0.04	0.00	0.01	0.28	0.45		0.22	0.05	0.05
v/c Ratio	0.62	0.33	0.08	0.29	0.39	0.06	0.50	0.45		0.40	0.85	0.08
Uniform Delay, d1	36.8	40.5	39.1	36.7	41.9	40.2	17.8	13.5		8.5	19.3	10.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	5.8	1.6	0.3	1.4	2.2	0.3	4.2	0.5		1.8	4.8	0.2
Delay (s)	42.6	42.0	39.4	38.0	44.1	40.5	22.0	14.0		10.3	24.0	10.8
Level of Service	D	D	D	D	D	D	С	B		В	C	В
Approach Delay (s)		41.5			41.1			14.6			22.4	
Approach LOS		D			D			В			С	
Intersection Summary												
HCM 2000 Control Delay			22.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.78									
Actuated Cycle Length (s)			103.8		um of los				19.0			_
Intersection Capacity Utiliza	ation		83.6%	IC	CU Level (of Service	5		E			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 108: Mayfield Road & Dixie Road

0//11/2019	07/11/20 ⁻	19
------------	-----------------------	----

	4	×	1	~	*	۲	Ţ	*	3	í,	*	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	
Lane Configurations	٦ ۲	+	1	5	+	1	5	+++	1	5	ትት _ው	
Fraffic Volume (vph)	17	53	236	158	153	51	309	905	110	52	1105	
Future Volume (vph)	17	53	236	158	153	51	309	905	110	52	1105	
Lane Group Flow (vph)	17	53	236	158	153	51	309	905	110	52	1113	
Furn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		8	4		4	2		2	6		
Detector Phase	8	8	8	4	4	4	5	2	2	1	6	
Switch Phase												
Ainimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	5.0	44.9	44.9	5.0	44.9	
/linimum Split (s)	47.9	47.9	47.9	47.9	47.9	47.9	8.0	51.8	51.8	8.0	51.8	
Fotal Split (s)	54.8	54.8	54.8	54.8	54.8	54.8	10.0	56.0	56.0	10.0	56.0	
Fotal Split (%)	45.4%	45.4%	45.4%	45.4%	45.4%	45.4%	8.3%	46.4%	46.4%	8.3%	46.4%	
/ellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	3.0	4.6	4.6	3.0	4.6	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.3	0.0	2.3	2.3	0.0	2.3	
ost Time Adjust (s).	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	6.9	6.9	6.9	6.9	6.9	6.9	3.0	6.9	6.9	3.0	6.9	
.ead/Lag							Lead	Lag	Lag	Lead	Lag	
ead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	Мах	Мах	None	Max	
/c Ratio	0.08	0.15	0.55	0.59	0.40	0.14	0.82	0.33	0.11	0.11	0.42	
Control Delay	29.5	30.3	16.4	42.7	34.7	6.9	28.6	12.2	2.9	6.0	13.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.5	30.3	16.4	42.7	34.7	6.9	28.6	12.2	2.9	6.0	13.6	
Queue Length 50th (m)	2.2	7.1	10.4	23.3	21.7	0.0	15.5	28.0	0.0	2.2	36.1	
Queue Length 95th (m)	7.1	15.7	29.8	40.9	37.1	6.4	#51.6	43.0	7.3	6.8	54.3	
nternal Link Dist (m)		363.8			1219.0			1347.7			595.2	
urn Bay Length (m)	175.0		220.0	210.0		125.0	240.0		150.0	230.0		
Base Capacity (vph)	586	973	872	710	1012	857	376	2714	960	466	2646	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.05	0.27	0.22	0.15	0.06	0.82	0.33	0.11	0.11	0.42	
ntersection Summary												
Cycle Length: 120.8												
ctuated Cycle Length: 91.1												
latural Cycle: 110												
Control Type: Semi Act-Unc												
95th percentile volume e			leue may	be longe	er.							
Queue shown is maximu	m after two	o cycles.										
Splits and Phases: 108: N	/layfield Ro	oad & Dix	ie Road									
401 X02	<u> </u>					X						
						- Ø1						

4 ₀₁	×02	A 91
10 s	56 s	54.8 s
) ₀₅	× øs	\varkappa_{ρ_3}
10 s	56 s	54.8 s

HCM Signalized Intersection Capacity Analysis 108: Mayfield Road & Dixie Road

	4	×	1	~	*	۲	ľ	1	7	í,	*	
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	٦ ۲	+	1	٦ ۲	+	1	٦ آ	+++	1	٦ ۲	**P#	
Traffic Volume (vph)	17	53	236	158	153	51	309	905	110	52	1105	8
Future Volume (vph)	17	53	236	158	153	51	309	905	110	52	1105	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.9	6.9	6.9	6.9	6.9	6.9	3.0	6.9	6.9	3.0	6.9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1601	1847	1512	1772	1921	1570	1807	4812	1617	1789	4894	
Flt Permitted	0.66	1.00	1.00	0.72	1.00	1.00	0.21	1.00	1.00	0.30	1.00	
Satd. Flow (perm)	1112	1847	1512	1347	1921	1570	402	4812	1617	562	4894	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	17	53	236	158	153	51	309	905	110	52	1105	8
RTOR Reduction (vph)	0	0	129	0	0	41	0	0	48	0	0	0
Lane Group Flow (vph)	17	53	107	158	153	10	309	905	62	52	1113	0
Heavy Vehicles (%)	14%	4%	8%	3%	0%	4%	1%	9%	1%	2%	7%	13%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		8	4		4	2		2	6		
Actuated Green, G (s)	18.0	18.0	18.0	18.0	18.0	18.0	58.4	51.4	51.4	55.4	49.9	
Effective Green, g (s)	18.0	18.0	18.0	18.0	18.0	18.0	58.4	51.4	51.4	55.4	49.9	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.20	0.20	0.64	0.56	0.56	0.60	0.54	
Clearance Time (s)	6.9	6.9	6.9	6.9	6.9	6.9	3.0	6.9	6.9	3.0	6.9	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	218	362	296	264	377	308	363	2697	906	413	2663	
v/s Ratio Prot		0.03			0.08		c0.06	0.19		0.01	0.23	
v/s Ratio Perm	0.02	0.45	0.07	c0.12	0.44	0.01	c0.48	0.04	0.04	0.07	0.40	
v/c Ratio	0.08	0.15	0.36	0.60	0.41	0.03	0.85	0.34	0.07	0.13	0.42	
Uniform Delay, d1	30.1	30.5	31.9	33.6	32.2	29.8	8.1	10.9	9.2	7.4	12.3	_
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.3	0.4	1.6	5.4	1.5	0.1	18.6	0.3	0.1	0.3	0.5	_
Delay (s)	30.4	30.9	33.5	39.0	33.7	29.9	26.7	11.2	9.4	7.7	12.8	
Level of Service	С	C	С	D	С	С	С	B	А	А	B	_
Approach Delay (s)		32.9			35.5			14.7			12.6	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			18.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.81									
Actuated Cycle Length (s)			91.7		um of los				16.8			
Intersection Capacity Utilizat	tion		84.8%	IC	U Level	of Service)		E			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 109: Countryside Drive & Dixie Road

	4	×	~	*	۲	Ţ	*	3	í,	*	۰.	
Lane Group	SEL	SET	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	<u>٦</u>	F,	<u>۲</u>	- †	1	<u>٦</u>	- 11	1	<u>۲</u>	- 11	- 7	
Traffic Volume (vph)	25	178	63	350	81	11	100	30	45	170	52	
Future Volume (vph)	25	178	63	350	81	11	100	30	45	170	52	
Lane Group Flow (vph)	25	196	63	350	81	11	100	30	45	170	52	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		1		1			2			2		
Permitted Phases	1		1		1	2		2	2		2	
Detector Phase	1	1	1	1	1	2	2	2	2	2	2	
Switch Phase												
Minimum Initial (s)	36.6	36.6	36.6	36.6	36.6	12.0	12.0	12.0	12.0	12.0	12.0	
Minimum Split (s)	43.2	43.2	43.2	43.2	43.2	35.2	35.2	35.2	35.2	35.2	35.2	
Total Split (s)	53.6	53.6	53.6	53.6	53.6	35.2	35.2	35.2	35.2	35.2	35.2	
Total Split (%)	60.4%	60.4%	60.4%	60.4%	60.4%	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	3.2	3.2	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.6	6.6	6.6	6.6	6.6	7.2	7.2	7.2	7.2	7.2	7.2	
Lead/Lag	Lead	Lead	Lead	Lead	Lead	Lag	Lag	Lag	Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	None	None	None	None	None	None	
v/c Ratio	0.04	0.16	0.08	0.29	0.08	0.05	0.16	0.11	0.21	0.28	0.17	
Control Delay	5.6	5.7	5.8	6.8	1.7	25.7	26.6	6.6	28.7	28.1	9.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.6	5.7	5.8	6.8	1.7	25.7	26.6	6.6	28.7	28.1	9.5	
Queue Length 50th (m)	1.0	8.0	2.6	16.6	0.0	1.2	5.7	0.0	5.0	10.0	0.0	
Queue Length 95th (m)	3.6	17.3	7.2	32.1	4.1	4.8	11.3	4.3	12.7	17.3	7.6	
Internal Link Dist (m)		1219.0		1436.4			1345.4			805.1		
Turn Bay Length (m)	150.0		190.0			150.0		140.0	120.0		150.0	
Base Capacity (vph)	688	1201	791	1212	992	453	1340	567	457	1328	618	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.16	0.08	0.29	0.08	0.02	0.07	0.05	0.10	0.13	0.08	
Intersection Summary												
Cycle Length: 88.8												
Actuated Cycle Length: 76.6												
Natural Cycle: 80												
Control Type: Semi Act-Unco	ord											
Splits and Phases: 100: Countruside Drive & Divie Road												

X.₆₂

Splits and Phases: 109: Countryside Drive & Dixie Road

×01

HCM Signalized Intersection Capacity Analysis 109: Countryside Drive & Dixie Road

07/1	1/2019
0111	1/2017

	4	×	4	~	*	۲	ľ	1	3	Ę.	*	Ł
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	5	ų,		5	- †	۳.	5	+ †	- F	<u>آ</u>	+ †	۳.
Traffic Volume (vph)	25	178	18	63	350	81	11	100	30	45	170	52
Future Volume (vph)	25	178	18	63	350	81	11	100	30	45	170	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6		6.6	6.6	6.6	7.2	7.2	7.2	7.2	7.2	7.2
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1825	1844		1825	1865	1484	1821	3650	1476	1725	3614	1596
Flt Permitted	0.55	1.00		0.63	1.00	1.00	0.64	1.00	1.00	0.69	1.00	1.00
Satd. Flow (perm)	1059	1844		1219	1865	1484	1235	3650	1476	1251	3614	1596
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	25	178	18	63	350	81	11	100	30	45	170	52
RTOR Reduction (vph)	0	3	0	0	0	28	0	0	25	0	0	43
Lane Group Flow (vph)	25	193	0	63	350	53	11	100	5	45	170	9
Confl. Peds. (#/hr)							2		37	37		2
Heavy Vehicles (%)	0%	3%	0%	0%	3%	10%	0%	0%	6%	3%	1%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		1			1			2			2	
Permitted Phases	1			1		1	2		2	2		2
Actuated Green, G (s)	49.8	49.8		49.8	49.8	49.8	12.9	12.9	12.9	12.9	12.9	12.9
Effective Green, g (s)	49.8	49.8		49.8	49.8	49.8	12.9	12.9	12.9	12.9	12.9	12.9
Actuated g/C Ratio	0.65	0.65		0.65	0.65	0.65	0.17	0.17	0.17	0.17	0.17	0.17
Clearance Time (s)	6.6	6.6		6.6	6.6	6.6	7.2	7.2	7.2	7.2	7.2	7.2
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	689	1200		793	1214	966	208	615	248	210	609	269
v/s Ratio Prot		0.10			c0.19			0.03			c0.05	
v/s Ratio Perm	0.02			0.05		0.04	0.01		0.00	0.04		0.01
v/c Ratio	0.04	0.16		0.08	0.29	0.05	0.05	0.16	0.02	0.21	0.28	0.03
Uniform Delay, d1	4.8	5.2		4.9	5.7	4.8	26.7	27.2	26.5	27.4	27.7	26.6
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.1	0.3		0.2	0.6	0.1	0.2	0.3	0.1	1.1	0.5	0.1
Delay (s)	4.9	5.5		5.1	6.3	4.9	26.9	27.4	26.6	28.5	28.3	26.7
Level of Service	А	A		А	A	А	С	С	С	С	С	С
Approach Delay (s)		5.4			6.0			27.2			28.0	_
Approach LOS		А			А			С			С	
Intersection Summary												
HCM 2000 Control Delay			13.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.29									
	Actuated Cycle Length (s)		76.5	Sum of lost time (s)					13.8			
Intersection Capacity Utilization	ation		97.4%	IC	CU Level	of Service	•		F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 110: Sandalwood Parkway East & Dixie Road

0//11/2019	07/1	1/2019
------------	------	--------

	4	×	2	~	•	۲	Ţ	1	4	*	
ane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	
ane Configurations	ሻ	- ++	7	ሻ	+ †	7	ኘ	- ##%	ሻ	- ##%	
raffic Volume (vph)	281	247	34	215	521	182	298	1109	81	1363	
uture Volume (vph)	281	247	34	215	521	182	298	1109	81	1363	
ane Group Flow (vph)	281	247	34	215	521	182	298	1210	81	1414	
urn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		2		1	6		3	8	7	4	
Permitted Phases	2		2	6		6	8		4		
Detector Phase	2	2	2	1	6	6	3	8	7	4	
Switch Phase											
/inimum Initial (s)	39.0	39.0	39.0	5.0	39.0	39.0	5.0	39.7	5.0	39.7	
/inimum Split (s)	46.0	46.0	46.0	8.0	46.0	46.0	8.0	47.4	8.0	47.4	
otal Split (s)	48.0	48.0	48.0	15.0	63.0	63.0	12.0	54.0	18.0	60.0	
otal Split (%)	35.6%	35.6%	35.6%	11.1%	46.7%	46.7%	8.9%	40.0%	13.3%	44.4%	
ellow Time (s)	4.6	4.6	4.6	3.0	4.6	4.6	3.0	4.0	3.0	4.0	
II-Red Time (s)	2.4	2.4	2.4	0.0	2.4	2.4	0.0	3.7	0.0	3.7	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	7.0	7.0	7.0	3.0	7.0	7.0	3.0	7.7	3.0	7.7	
ead/Lag	Lag	Lag	Lag	Lead			Lead	Lag	Lead	Lag	
ead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes	Yes	
ecall Mode	None	None	None	None	None	None	None	Max	None	Max	
/c Ratio	1.07	0.23	0.06	0.41	0.35	0.24	1.54	0.63	0.33	0.71	
Control Delay	119.5	35.9	0.2	26.4	27.9	4.1	294.8	36.2	20.7	37.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	119.5	35.9	0.2	26.4	27.9	4.1	294.8	36.2	20.7	37.1	
Queue Length 50th (m)	~76.1	23.9	0.0	32.8	45.5	0.0	~84.3	87.6	9.9	106.0	
Queue Length 95th (m)	#127.1	34.2	0.0	49.4	58.6	12.8	#139.3	105.3	17.9	121.6	
nternal Link Dist (m)		1436.4			503.2			672.7		108.5	
urn Bay Length (m)	120.0		120.0	125.0		125.0	150.0		130.0		
ase Capacity (vph)	263	1076	549	527	1484	752	193	1908	299	2003	
tarvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
educed v/c Ratio	1.07	0.23	0.06	0.41	0.35	0.24	1.54	0.63	0.27	0.71	
tersection Summary											
ycle Length: 135											
ctuated Cycle Length: 135)										
atural Cycle: 110											
ontrol Type: Semi Act-Uno				u.,							
Volume exceeds capaci			cally infin	ite.							
Queue shown is maximu											
95th percentile volume of Queue shown is maximu			leue may	be longe	er.						
plits and Phases: 110: S	Sandalwoo	d Parkwa	v East &	Dixie Roa	ad						
			<u>, _act a</u>) ₆₃	1	и				
01 02 15 48 s					2 103	60 s	ri				
X					607		» øв				

HCM Signalized Intersection Capacity Analysis 110: Sandalwood Parkway East & Dixie Road

MovementSELSETSERNWLNWTNWRNELNETNERSWLLane Configurations11111111111Traffic Volume (vph)28124734215521182298110910181Future Volume (vph)28124734215521182298110910181Ideal Flow (vphpl)1900190019001900190019001900190019001900Total Lost time (s)7.07.07.07.07.07.03.07.73.0Lane Util. Factor1.000.951.001.000.951.001.001.001.00Frpb, ped/bikes1.001.000.961.001.001.001.001.001.00Frt1.001.000.951.001.000.951.001.001.001.00Filpb, ped/bikes0.981.001.000.951.001.001.001.001.00Filt Protected0.951.001.000.951.001.000.951.000.95Satd. Flow (prot)1794354415551790357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.00Add. Flow (pph)28124734 <th>*</th> <th></th>	*	
Traffic Volume (vph)28124734215521182298110910181Future Volume (vph)28124734215521182298110910181Ideal Flow (vphpl)190019001900190019001900190019001900190019001900Total Lost time (s)7.07.07.03.07.07.03.07.73.0Lane Util. Factor1.000.951.001.000.951.001.000.911.00Frpb, ped/bikes1.001.000.961.001.000.951.001.001.00Flpb, ped/bikes0.981.001.000.991.001.001.001.001.00Frt1.001.000.851.001.000.951.000.991.00Flt Protected0.951.001.000.951.001.000.951.000.95Satd. Flow (prot)17943544155517903579155718075059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	SWT	SWR
Future Volume (vph)28124734215521182298110910181Ideal Flow (vphpl)190019001900190019001900190019001900190019001900Total Lost time (s)7.07.07.07.03.07.73.07.73.0Lane Util. Factor1.000.951.001.000.951.001.000.911.00Frpb, ped/bikes1.001.000.961.001.000.951.001.001.00Flpb, ped/bikes0.981.001.000.991.001.001.001.001.00Frt1.001.000.851.001.000.851.001.000.951.00Ft Protected0.951.001.000.951.001.000.951.000.95Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	- ##%	
Ideal Flow (vphpl)19001	1363	51
Total Lost time (s)7.07.07.07.03.07.73.0Lane Util. Factor1.000.951.001.000.951.001.000.911.00Frpb, ped/bikes1.001.000.961.001.000.951.001.000.911.00Flpb, ped/bikes0.981.001.000.991.001.001.001.001.001.00Frt1.001.000.851.001.000.851.000.991.001.000.99Flt Protected0.951.001.000.951.001.000.951.000.951.00Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	1363	51
Lane Util. Factor1.000.951.001.000.951.001.000.911.00Frpb, ped/bikes1.001.000.961.001.000.951.001.001.00Flpb, ped/bikes0.981.001.000.991.001.001.001.001.00Frt1.001.000.851.001.000.851.000.991.00Fit Protected0.951.001.000.951.000.951.000.95Satd. Flow (prot)179435441555179035791557180750591806Fit Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	1900	1900
Frpb, ped/bikes1.001.000.961.001.000.951.001.001.00Flpb, ped/bikes0.981.001.000.991.001.001.001.001.00Frt1.001.000.851.001.000.851.000.991.00Flt Protected0.951.001.000.951.000.951.000.95Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	7.7	
Fipb. ped/bikes0.981.001.000.991.001.001.001.001.00Frt1.001.000.851.001.000.851.000.991.00Flt Protected0.951.001.000.951.001.000.951.000.95Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	0.91	
Frt1.001.000.851.001.000.851.000.991.00Flt Protected0.951.001.000.951.001.000.951.000.95Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	1.00	
Flt Protected0.951.001.000.951.001.000.951.000.95Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	1.00	
Satd. Flow (prot)179435441555179035791557180750591806Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	0.99	
Flt Permitted0.461.001.000.551.001.000.091.000.13Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	1.00	
Satd. Flow (perm)867354415551043357915571775059247Peak-hour factor, PHF1.001.001.001.001.001.001.001.001.001.00Adj. Flow (vph)28124734215521182298110910181	5161	
Peak-hour factor, PHF1.00 <t< td=""><td>1.00</td><td></td></t<>	1.00	
Adj. Flow (vph) 281 247 34 215 521 182 298 1109 101 81	5161	
	1.00	1.00
	1363	51
RTOR Reduction (vph) 0 0 24 0 0 107 0 7 0 0	3	0
Lane Group Flow (vph) 281 247 10 215 521 75 298 1203 0 81	1411	0
Confl. Peds. (#/hr) 28 21 21 28 14 25 25		14
Heavy Vehicles (%) 0% 3% 1% 2% 0% 1% 2% 2% 1%	1%	0%
Turn Type Perm NA Perm pm+pt NA Perm pm+pt NA pm+pt	NA	
Protected Phases 2 1 6 3 8 7	4	
Permitted Phases226684		
Actuated Green, G (s) 41.0 41.0 56.0 56.0 59.7 50.7 62.9	52.3	
Effective Green, g (s) 41.0 41.0 56.0 56.0 59.7 50.7 62.9	52.3	
Actuated g/C Ratio 0.30 0.30 0.41 0.41 0.44 0.38 0.47	0.39	
Clearance Time (s) 7.0 7.0 7.0 3.0 7.0 3.0 7.7 3.0	7.7	
Vehicle Extension (s) 5.0	5.0	
Lane Grp Cap (vph) 263 1076 472 499 1484 645 186 1899 237	1999	
v/s Ratio Prot 0.07 c0.04 0.15 c0.11 0.24 c0.03	0.27	
v/s Ratio Perm c0.32 0.01 0.14 0.05 c0.60 0.13		
v/c Ratio 1.07 0.23 0.02 0.43 0.35 0.12 1.60 0.63 0.34	0.71	
Uniform Delay, d1 47.0 35.2 32.9 26.3 27.1 24.3 29.7 34.5 22.3	34.9	
Progression Factor 1.00 <td>1.00</td> <td></td>	1.00	
Incremental Delay, d2 74.8 0.2 0.0 1.3 0.3 0.2 294.6 1.6 1.8	2.1	
Delay (s) 121.8 35.4 33.0 27.6 27.4 24.5 324.3 36.2 24.1	37.0	
Level of Service F D C C C C F D C	D	
Approach Delay (s) 78.5 26.8 93.1	36.3	
Approach LOS E C F	D	
Intersection Summary		
HCM 2000 Control Delay 58.7 HCM 2000 Level of Service E		
HCM 2000 Volume to Capacity ratio 1.27		
Actuated Cycle Length (s)135.0Sum of lost time (s)20.7		
Intersection Capacity Utilization 136.0% ICU Level of Service H		_
Analysis Period (min) 15		

	۶	ŕ	*	Ť	Ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			Ł	Ę.	
Traffic Volume (veh/h)	18	110	67	233	198	15
Future Volume (Veh/h)	18	110	67	233	198	15
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	18	110	67	233	198	15
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110		
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	572	206	213			
vC1, stage 1 conf vol	072	200	210			
vC2, stage 2 conf vol						
vCu, unblocked vol	572	206	213			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.1	0.2				
tF (s)	3.5	3.3	2.2			
p0 queue free %	96	87	95			
cM capacity (veh/h)	461	840	1369			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	128	300	213			
Volume Left	18	67	0			
Volume Right	110	0	15			
cSH	753	1369	1700			
Volume to Capacity	0.17	0.05	0.13			
Queue Length 95th (m)	4.3	1.1	0.0			
Control Delay (s)	10.8	2.1	0.0			
Lane LOS	В	А				
Approach Delay (s)	10.8	2.1	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			3.1			
Intersection Capacity Utiliz	zation		45.1%	IC	CU Level c	f Service
Analysis Period (min)			15			

Queues 101: Kennedy Road North/Kennedy Road & Mayfield Road

	۶	-	£	-	Ł	1	Ť	۴	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	5	† Ъ	5	- ††	7	5	ŧ	7	5	£.	
Traffic Volume (vph)	112	1132	123	632	217	101	160	392	1037	392	
Future Volume (vph)	112	1132	123	632	217	101	160	392	1037	392	
Lane Group Flow (vph)	112	1220	123	632	217	101	160	392	1037	735	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases		2		2			4		3	4	
Permitted Phases	2		2		2	4		4	4		
Detector Phase	2	2	2	2	2	4	4	4	3	4	
Switch Phase											
Minimum Initial (s)	25.0	25.0	25.0	25.0	25.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	31.3	31.3	31.3	31.3	31.3	31.8	31.8	31.8	8.0	31.8	
Total Split (s)	65.0	65.0	65.0	65.0	65.0	40.0	40.0	40.0	35.0	40.0	
Total Split (%)	46.4%	46.4%	46.4%	46.4%	46.4%	28.6%	28.6%	28.6%	25.0%	28.6%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.8	2.8	2.8	0.0	2.8	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3	6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lead/Lag						Lag	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Мах	Max	Мах	Max	None	None	None	None	None	
v/c Ratio	0.48	0.84	2.05	0.45	0.29	1.91	0.39	0.95	1.48	1.73	
Control Delay	38.4	42.7	549.7	30.5	4.1	499.2	48.1	79.1	251.8	369.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	38.4	42.7	549.7	30.5	4.1	499.2	48.1	79.1	251.8	369.2	
Queue Length 50th (m)	20.6	144.5	~49.0	60.2	0.0	~39.4	34.5	88.6	~283.3	~272.7	
Queue Length 95th (m)	39.2	172.0	#72.2	75.7	13.8	#74.3	54.3	#146.3	#355.5	#342.5	
Internal Link Dist (m)		613.9		728.0			1200.6			493.9	
Turn Bay Length (m)	90.0		150.0		130.0			100.0	100.0		
Base Capacity (vph)	231	1451	60	1391	759	53	414	413	699	425	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.48	0.84	2.05	0.45	0.29	1.91	0.39	0.95	1.48	1.73	
Intersection Summary											
Cycle Length: 140											
Actuated Cycle Length: 140											
Natural Cycle: 75											
Control Type: Semi Act-Unco											
 Volume exceeds capacity 	, queue i	s theoreti	cally infin	ite.							
Queue shown is maximun											
# 95th percentile volume ex			leue may	be longe	er.						
Queue shown is maximun	n after two	o cycles.									
Splits and Phases: 101: Ke	ennedy R	oad North	/Kenned	v Road &	Mavfield	Road					
	shinedy re		<u>"Renneu</u>		1	Roud		-	ŧ.		
₩ 22					Ø3			Į į	991		
1971 N.					9 5			- HI !			

HCM Signaliz	zed Intersection Capa	city Analysis	
101: Kenned	y Road North/Kenned	y Road & Ma	yfield Road

07/11/2019

	۶	-	¥	ŕ	-	×.	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5			5	- † †	7	5	- †	1	ሻ	ł,	
Traffic Volume (vph)	112	1132	88	123	632	217	101	160	392	1037	392	343
Future Volume (vph)	112	1132	88	123	632	217	101	160	392	1037	392	343
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1601	3453		1772	3318	1512	1772	1746	1585	1789	1700	
Flt Permitted	0.33	1.00		0.08	1.00	1.00	0.12	1.00	1.00	0.58	1.00	
Satd. Flow (perm)	551	3453		146	3318	1512	225	1746	1585	1100	1700	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	112	1132	88	123	632	217	101	160	392	1037	392	343
RTOR Reduction (vph)	0	4	0	0	0	126	0	0	37	0	22	0
Lane Group Flow (vph)	112	1216	0	123	632	91	101	160	355	1037	713	0
Confl. Peds. (#/hr)			1001				3					3
Heavy Vehicles (%)	14%	4%	12%	3%	10%	8%	3%	10%	3%	2%	1%	8%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases		2			2			4		3	4	
Permitted Phases	2			2		2	4		4	4		
Actuated Green, G (s)	58.7	58.7		58.7	58.7	58.7	33.2	33.2	33.2	65.2	33.2	
Effective Green, g (s)	58.7	58.7		58.7	58.7	58.7	33.2	33.2	33.2	65.2	33.2	
Actuated g/C Ratio	0.42	0.42		0.42	0.42	0.42	0.24	0.24	0.24	0.47	0.24	
Clearance Time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	231	1447		61	1391	633	53	414	375	669	403	
v/s Ratio Prot		0.35			0.19			0.09		c0.35	0.42	
v/s Ratio Perm	0.20			c0.84		0.06	c0.45		0.22	0.37		
v/c Ratio	0.48	0.84		2.02	0.45	0.14	1.91	0.39	0.95	1.55	1.77	
Uniform Delay, d1	29.6	36.4		40.6	29.2	25.1	53.4	44.8	52.5	34.2	53.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	7.1	6.0		509.9	1.1	0.5	469.6	1.3	33.3	254.9	356.0	
Delay (s)	36.7	42.5		550.5	30.2	25.6	523.0	46.1	85.8	289.1	409.4	
Level of Service	D	D		F	С	С	F	D	F	F	F	
Approach Delay (s)		42.0			95.0			143.7			339.0	_
Approach LOS		D			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			178.2	Н	CM 2000	Level of	Service		F			
	HCM 2000 Volume to Capacity ratio		1.86									
Actuated Cycle Length (s)			140.0		um of los			16.1				
Intersection Capacity Utilization	ation		140.3%	IC	U Level	of Service	;		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues	
103: Kennedy	y Road North & Sandalwood Parkway East

0//11/2019	07/1	1/2019
------------	------	--------

	۶	-	4	-	•	Ť	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	† Ъ	<u>آ</u>	±	<u>آ</u>	÷	<u> </u>	† Ъ	
Traffic Volume (vph)	5	1722	127	1148	310	539	300	428	
Future Volume (vph)	5	1722	127	1148	310	539	300	428	
Lane Group Flow (vph)	5	1963	127	1274	310	583	300	610	
Turn Type	Perm	NA	pm+pt	NA	pm+pt	NA	pm+pt	NA	
Protected Phases		2	1	6	7	4	3	8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	1	6	7	4	3	8	
Switch Phase									
Minimum Initial (s)	8.0	8.0	5.0	8.0	5.0	8.0	5.0	8.0	
Minimum Split (s)	36.0	36.0	8.0	36.0	8.0	40.0	8.0	40.0	
Total Split (s)	69.0	69.0	10.0	79.0	12.0	45.0	16.0	49.0	
Total Split (%)	49.3%	49.3%	7.1%	56.4%	8.6%	32.1%	11.4%	35.0%	
Yellow Time (s)	4.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	2.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	3.0	6.0	3.0	6.0	3.0	6.0	
Lead/Lag	Lag	Lag	Lead		Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.05	1.23	0.86	0.69	1.10	0.61	0.95	0.61	
Control Delay	23.4	143.2	70.9	27.4	117.6	46.6	71.4	40.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.4	143.2	70.9	27.4	117.6	46.6	71.4	40.9	
Queue Length 50th (m)	0.7	~324.6	17.0	123.6	~63.9	67.6	53.3	64.4	
Queue Length 95th (m)	3.4	#363.3	#51.1	146.8	#121.3	85.7	#103.0	82.8	
Internal Link Dist (m)		240.4		84.0		354.2		1159.5	
Turn Bay Length (m)	75.0		85.0		100.0		70.0		
Base Capacity (vph)	108	1597	147	1834	282	956	317	999	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	1.23	0.86	0.69	1.10	0.61	0.95	0.61	

Intersection Summary

Cycle Length: 140

Actuated Cycle Length: 140 Natural Cycle: 145

Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 103: Kennedy Road North & Sandalwood Parkway East

Forecast 2041 AM

Synchro 9 Report Page 3

HCM Signaliz	zed Intersection Capacity Analysis	
103: Kennedy	y Road North & Sandalwood Parkway	/ East

07/11/2019

	۶	-	F	£	-	×,	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	÷β,		٦ ۲	t, the factor of the factor		5	t, the feature of t		٦ ۲	the f β,	
Traffic Volume (vph)	5	1722	241	127	1148	126	310	539	44	300	428	182
Future Volume (vph)	5	1722	241	127	1148	126	310	539	44	300	428	182
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		3.0	6.0		3.0	6.0		3.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.98		1.00	0.99		1.00	0.99		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1674	3530		1807	3508		1772	3417		1789	3146	
Flt Permitted	0.14	1.00		0.06	1.00		0.30	1.00		0.25	1.00	
Satd. Flow (perm)	239	3530		115	3508		563	3417		470	3146	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	5	1722	241	127	1148	126	310	539	44	300	428	182
RTOR Reduction (vph)	0	8	0	0	6	0	0	4	0	0	34	0
Lane Group Flow (vph)	5	1955	0	127	1268	0	310	579	0	300	576	0
Heavy Vehicles (%)	9%	1%	5%	1%	2%	7%	3%	6%	1%	2%	1%	34%
Turn Type	Perm	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		2		1	6		7	4		3	8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	63.0	63.0		73.0	73.0		48.0	39.0		55.0	43.0	
Effective Green, g (s)	63.0	63.0		73.0	73.0		48.0	39.0		55.0	43.0	
Actuated g/C Ratio	0.45	0.45		0.52	0.52		0.34	0.28		0.39	0.31	
Clearance Time (s)	6.0	6.0		3.0	6.0		3.0	6.0		3.0	6.0	
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Grp Cap (vph)	107	1588		144	1829		270	951		307	966	
v/s Ratio Prot		c0.55		c0.04	0.36		c0.07	0.17		c0.09	0.18	
v/s Ratio Perm	0.02			0.41			c0.32			0.29		
v/c Ratio	0.05	1.23		0.88	0.69		1.15	0.61		0.98	0.60	
Uniform Delay, d1	21.6	38.5		35.1	25.1		43.5	43.9		37.5	41.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.4	109.8		44.5	1.5		100.8	2.9		45.1	2.7	
Delay (s)	22.0	148.3		79.6	26.6		144.4	46.8		82.6	43.9	
Level of Service	С	F		E	С		F	D		F	D	_
Approach Delay (s)		148.0			31.4			80.6			56.6	
Approach LOS		F			С			F			E	
Intersection Summary												
HCM 2000 Control Delay			88.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.17									
Actuated Cycle Length (s)			140.0		um of lost				18.0			
Intersection Capacity Utiliza	tion		113.8%	IC	CU Level of	of Service	9		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 104: Heart Lake Road & Mayfield Road

	۶	-	F	f	-	Ł	*	Ť	1	Ý	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካ	444	7	ካ	444	1	5	- †	1	5	- †	1
Traffic Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Future Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Lane Group Flow (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Detector Phase	2	2	2	1	6	6	7	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	5.0	12.0	12.0	5.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	35.7	35.7	35.7	8.0	35.7	35.7	8.0	39.9	39.9	39.9	39.9	39.9
Total Split (s)	81.0	81.0	81.0	9.0	90.0	90.0	9.0	50.0	50.0	41.0	41.0	41.0
Total Split (%)	57.9%	57.9%	57. 9 %	6.4%	64.3%	64.3%	6.4%	35.7%	35.7%	29.3%	29.3%	29.3%
Yellow Time (s)	4.6	4.6	4.6	3.0	4.6	4.6	3.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.1	2.1	2.1	0.0	2.1	2.1	0.0	2.9	2.9	2.9	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lead/Lag	Lag	Lag	Lag	Lead			Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes			Yes	Yes	Yes
Recall Mode	Min	Min	Min	None	Min	Min	None	None	None	None	None	None
v/c Ratio	0.08	0.57	0.38	0.30	0.24	0.02	0.61	0.05	0.08	0.41	0.42	0.29
Control Delay	11.0	14.8	2.1	8.9	7.9	0.1	46.5	37.9	4.8	53.6	51.7	13.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.0	14.8	2.1	8.9	7.9	0.1	46.5	37.9	4.8	53.6	51.7	13.1
Queue Length 50th (m)	2.4	67.8	0.0	3.6	18.7	0.0	32.8	3.4	0.0	14.7	20.2	0.0
Queue Length 95th (m)	6.9	89.7	11.6	8.5	27.6	0.0	57.0	10.0	3.9	30.2	38.2	12.9
Internal Link Dist (m)		258.3			1347.7			470.2			409.0	
Turn Bay Length (m)	180.0		280.0	160.0		160.0	210.0		110.0	215.0		130.0
Base Capacity (vph)	482	3596	1279	223	3702	1012	313	825	731	485	646	610
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.45	0.33	0.30	0.20	0.01	0.61	0.03	0.04	0.16	0.17	0.14
Intersection Summary												

Cycle Length: 140

Actuated Cycle Length: 105.1 Natural Cycle: 95 Control Type: Actuated-Uncoordinated

Splits and Phases: 104: Heart Lake Road & Mayfield Road

🗸 01 🕂 02	<¶ø₁
8 s 81 s	50 s
→ ▼ 26	★ Ø7 Ø7
R0 s	9.5 41.5

HCM Signalized Intersection Capacity Analysis 104: Heart Lake Road & Mayfield Road

	۶	-	¥	£	-	K	*	Ť	1	4	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>٦</u>	+++	- 7	<u>۲</u>	+++	- 7	<u>٦</u>	- †	1	<u>۲</u>	- †	1
Traffic Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Future Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1738	4948	1601	1772	4683	1266	1738	1921	1633	1825	1902	1633
Flt Permitted	0.36	1.00	1.00	0.10	1.00	1.00	0.57	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	665	4948	1601	190	4683	1266	1038	1921	1633	1429	1902	1633
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
RTOR Reduction (vph)	0	0	179	0	0	5	0	0	25	0	0	72
Lane Group Flow (vph)	30	1622	244	66	728	9	191	21	7	78	107	11
Heavy Vehicles (%)	5%	6%	2%	3%	12%	29%	5%	0%	0%	0%	1%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	60.7	60.7	60.7	68.2	68.2	68.2	23.4	23.4	23.4	14.1	14.1	14.1
Effective Green, g (s)	60.7	60.7	60.7	68.2	68.2	68.2	23.4	23.4	23.4	14.1	14.1	14.1
Actuated g/C Ratio	0.58	0.58	0.58	0.65	0.65	0.65	0.22	0.22	0.22	0.13	0.13	0.13
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	383	2854	923	190	3035	820	272	427	363	191	254	218
v/s Ratio Prot		c0.33		c0.01	0.16		c0.04	0.01			0.06	
v/s Ratio Perm	0.05		0.15	0.21		0.01	c0.11		0.00	0.05		0.01
v/c Ratio	0.08	0.57	0.26	0.35	0.24	0.01	0.70	0.05	0.02	0.41	0.42	0.05
Uniform Delay, d1	9.9	14.0	11.1	8.9	7.7	6.6	37.1	32.2	31.9	41.7	41.8	39.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.4	0.3	2.3	0.1	0.0	9.9	0.1	0.0	3.0	2.4	0.2
Delay (s)	10.0	14.4	11.4	11.2	7.8	6.6	46.9	32.3	32.0	44.7	44.2	39.9
Level of Service	В	В	В	В	A	А	D	С	С	D	D	D
Approach Delay (s)		13.8			8.0			43.7			43.0	
Approach LOS		В			A			D			D	
Intersection Summary												
HCM 2000 Control Delay			16.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.61	-	<u></u>				10.1			
Actuated Cycle Length (s)	•		105.2		um of los				19.6			
Intersection Capacity Utilizat	ion		67.4%	IC	CU Level	of Service	Ş		С			
Analysis Period (min)			15									
c Critical Lane Group												

		Ł	Ť	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7		7	5	
Traffic Volume (veh/h)	0	244	0	172	597	0
Future Volume (Veh/h)	0	244	0	172	597	0
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	244	0	172	597	0
Pedestrians	Ū	_	Ű	.,_	077	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NUTIC			NOTE
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1194	0			172	
vC1, stage 1 conf vol	1174	0			172	
vC2, stage 2 conf vol						
vCu, unblocked vol	1194	0			172	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			4.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	78			58	
cM capacity (veh/h)	120	1088			1417	
					1417	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	244	172	597			
Volume Left	0	0	597			
Volume Right	244	172	0			
cSH	1088	1700	1417			
Volume to Capacity	0.22	0.10	0.42			
Queue Length 95th (m)	6.0	0.0	15.0			
Control Delay (s)	9.3	0.0	9.4			
Lane LOS	А		А			
Approach Delay (s)	9.3	0.0	9.4			
Approach LOS	А					
Intersection Summary						
Average Delay			7.8			
Intersection Capacity Utiliz	zation		50.4%	IC		of Service
Analysis Period (min)			15			
			10			

	£	Ł	Ť	۴	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ኘ	7	ŧ				
Traffic Volume (veh/h)	725	127	133	0	0	0	
Future Volume (Veh/h)	725	127	133	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	725	127	133	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			243				
pX, platoon unblocked							
vC, conflicting volume	133	133			133		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	133	133			133		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	16	86			100		
cM capacity (veh/h)	863	922			1464		
Direction, Lane #	WB 1	WB 2	NB 1				
Volume Total	725	127	133				
Volume Left	725	0	0				
Volume Right	0	127	0				
cSH	863	922	1700				
Volume to Capacity	0.84	0.14	0.08				
Queue Length 95th (m)	69.8	3.3	0.0				
Control Delay (s)	26.8	9.5	0.0				
Lane LOS	D	А					
Approach Delay (s)	24.2		0.0				
Approach LOS	С						
Intersection Summary							
Average Delay			20.9				
Intersection Capacity Utilizati	ion		53.8%	IC	U Level o	of Service	
Analysis Period (min)							

Queues
107: Heart Lake Road & Sandalwood Parkway East

07/11/2019

	۶	-	ŕ	•	Ł	•	Ť	1	1	Ļ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	<u>آ</u>	<u>ተተጉ</u>	ገ	- ++	7	- ሻ	- †	7	5	- †	7	
Traffic Volume (vph)	53	2106	230	1804	46	33	34	99	357	240	128	
Future Volume (vph)	53	2106	230	1804	46	33	34	99	357	240	128	
Lane Group Flow (vph)	53	2214	230	1804	46	33	34	99	357	240	128	
	m+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases	5	2	1	6		7	4		3	8		
Permitted Phases	2		6		6	4		4	8		8	
Detector Phase	5	2	1	6	6	7	4	4	3	8	8	
Switch Phase												
Minimum Initial (s)	5.0	40.0	5.0	40.0	40.0	5.0	8.0	8.0	5.0	8.0	8.0	
Minimum Split (s)	8.0	46.0	8.0	46.0	46.0	8.0	50.0	50.0	8.0	50.0	50.0	
Total Split (s)	10.0	69.0	10.0	69.0	69.0	10.0	51.0	51.0	10.0	51.0	51.0	
Total Split (%)	7.1%	49.3%	7.1%	49.3%	49.3%	7.1%	36.4%	36.4%	7.1%	36.4%	36.4%	
Yellow Time (s)	3.0	4.0	3.0	4.0	4.0	3.0	5.0	5.0	3.0	5.0	5.0	
All-Red Time (s)	0.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.0	3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0	
	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	None	Max	None	Max	Max	None	None	None	None	None	None	
	0.30	0.78	1.30	0.90	0.05	0.13	0.11	0.30	1.00	0.65	0.31	
Control Delay	12.9	23.9	196.8	31.3	1.1	29.8	40.1	10.0	87.9	52.0	8.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.9	23.9	196.8	31.3	1.1	29.8	40.1	10.0	87.9	52.0	8.7	
Queue Length 50th (m)	3.8	135.0	~49.7	185.4	0.0	5.0	6.1	0.0	65.7	48.1	0.0	
Queue Length 95th (m)	9.6	178.2	#104.1	#270.9	1.9	11.6	14.1	12.4	#107.2	72.1	14.0	
Internal Link Dist (m)		149.0		637.0			433.6			218.7		
Turn Bay Length (m) 1	150.0		190.0					85.0	200.0		150.0	
Base Capacity (vph)	181	2838	177	2008	923	261	734	673	357	727	684	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.78	1.30	0.90	0.05	0.13	0.05	0.15	1.00	0.33	0.19	

Intersection Summary

Cycle Length: 140

Actuated Cycle Length: 114.6

Natural Cycle: 135

Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 107: Heart Lake Road & Sandalwood Parkway East

Forecast 2041 AM

HCM Signalized Intersection Capacity Analysis	
107: Heart Lake Road & Sandalwood Parkway E	ast

07/11/2019

	۶	-	F	£	←	Ł	•	Ť	1	5	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	11 P		ሻ	+ †	۳.	5	- †	۳.	5	•	۲.
Traffic Volume (vph)	53	2106	108	230	1804	46	33	34	99	357	240	128
Future Volume (vph)	53	2106	108	230	1804	46	33	34	99	357	240	128
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1825	5125		1789	3510	1555	1674	1902	1585	1807	1883	1570
Flt Permitted	0.06	1.00		0.06	1.00	1.00	0.47	1.00	1.00	0.64	1.00	1.00
Satd. Flow (perm)	120	5125		115	3510	1555	826	1902	1585	1211	1883	1570
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	53	2106	108	230	1804	46	33	34	99	357	240	128
RTOR Reduction (vph)	0	3	0	0	0	20	0	0	83	0	0	103
Lane Group Flow (vph)	53	2211	0	230	1804	26	33	34	16	357	240	25
Heavy Vehicles (%)	0%	1%	13%	2%	4%	5%	9%	1%	3%	1%	2%	4%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2	())		6	(6	4	10.4	4	8	00.4	8
Actuated Green, G (s)	69.6	64.1		72.6	65.6	65.6	23.4	19.4	19.4	29.4	22.4	22.4
Effective Green, g (s)	69.6	64.1		72.6	65.6	65.6	23.4	19.4	19.4	29.4	22.4	22.4
Actuated g/C Ratio	0.60	0.55		0.62	0.56	0.56	0.20	0.17	0.17	0.25	0.19	0.19
Clearance Time (s)	3.0 5.0	6.0 5.0		3.0 5.0	6.0	6.0 5.0	3.0 E.0	7.0 5.0	7.0	3.0 5.0	7.0 5.0	7.0
Vehicle Extension (s)					5.0		5.0		5.0			5.0
Lane Grp Cap (vph)	152	2819		172	1976	875	195	316	263	341	362	301
v/s Ratio Prot	0.02 0.19	0.43		c0.08	0.51	0.02	0.01 0.03	0.02	0.01	c0.06 c0.20	0.13	0.00
v/s Ratio Perm v/c Ratio	0.19	0.78		c0.75 1.34	0.91	0.02	0.03	0.11	0.01	1.05	0.66	0.02 0.08
Uniform Delay, d1	21.3	20.7		31.8	22.9	11.3	38.0	41.2	40.9	43.4	43.6	38.6
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	43.0	1.00
Incremental Delay, d2	2.9	2.3		185.7	7.9	0.1	0.9	0.3	0.2	61.5	5.9	0.2
Delay (s)	24.2	23.0		217.5	30.8	11.4	38.9	41.5	41.1	104.9	49.5	38.9
Level of Service	24.2 C	23.0 C		217.5 F	о.о С	B	D	D	D	F	47.5 D	50.7 D
Approach Delay (s)	U	23.0		1	51.0	D	D	40.7	D	1	74.9	D
Approach LOS		C			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			41.9	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.31									
Actuated Cycle Length (s)			116.5		um of los				19.0			
Intersection Capacity Utiliza	ition		97.4%	IC	U Level	of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 108: Dixie Road & Mayfield Road

Lane Group EBL EBT EBR WBL WBT NBL NBT NBR SBL SBT SBR Lane Configurations 1 <t< th=""><th></th><th>٦</th><th>-</th><th>¥</th><th>ŕ</th><th>←</th><th>*</th><th>Ť</th><th>1</th><th>1</th><th>Ļ</th><th>4</th><th></th></t<>		٦	-	¥	ŕ	←	*	Ť	1	1	Ļ	4	
Traffic Volume (vph) 348 1942 487 86 889 283 93 120 46 278 449 Future Volume (vph) 348 1942 487 86 889 283 93 120 46 278 449 Lane Group Flow (vph) 348 1942 487 86 894 283 93 120 46 278 449 Lane Group Flow (vph) 348 1942 487 86 894 283 93 120 46 278 449 Lane Group Flow (vph) 348 1942 487 86 894 283 93 120 46 278 449 Lane Group Flow (vph) 348 1942 487 86 894 283 93 120 46 278 449 Permitted Phases 5 2 2 1 6 4 4 8 8 8 Switch Phase 50 50 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Lane Group								NBR		SBT	SBR	
Traffic Volume (vph) 348 1942 487 86 889 283 93 120 46 278 449 Future Volume (vph) 348 1942 487 86 889 283 93 120 46 278 449 Lane Group Flow (vph) 348 1942 487 86 894 283 93 120 46 278 449 Turn Type pm+pt NA Perm mpm+pt NA Perm NA NA Perm NA NA Perm NA NA NA Perm NA SA SA SA <td>Lane Configurations</td> <td>5</td> <td>+++</td> <td>1</td> <td>5</td> <td><u>₽</u>₽₽</td> <td>- ሻ</td> <td>- †</td> <td>7</td> <td>5</td> <td>- †</td> <td>7</td> <td></td>	Lane Configurations	5	+++	1	5	<u>₽</u> ₽₽	- ሻ	- †	7	5	- †	7	
Lane Group Flow (vph) 348 1942 487 86 894 283 93 120 46 278 449 Turn Type pm+pt NA Perm mA Perm NA Perm NA Perm NA Perm NA Perm Perm NA Perm Perm Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm NA Perm NA Perm Perm Perm NA Perm Perm NA Perm SA SA	Traffic Volume (vph)	348		487	86	889	283	93	120	46	278	449	
Turn Type pm+pt NA Perm pm+pt NA Perm NA Perm NA Perm Protected Phases 5 2 1 6 4 4 8 8 Permitted Phases 2 2 6 4 4 8 8 Detector Phase 5 2 2 1 6 4 4 8 8 Minimum Initial (s) 5.0 38.0 38.0 5.0 38.0 54.0 56.0	Future Volume (vph)					889							
Protected Phases 5 2 1 6 4 8 Permitted Phases 2 2 6 4 4 8 8 Detector Phase 5 2 2 1 6 4 4 8 8 Minimum Initial (s) 50 38.0 38.0 50.0 38.0 54.0<	Lane Group Flow (vph)	348	1942	487	86	894	283	93	120	46	278	449	
Permitted Phases 2 2 6 4 4 8 8 Detector Phase 5 2 2 1 6 4 4 8 8 Switch Phase - - - - - 12.0	Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Detector Phase 5 2 2 1 6 4 4 4 8 8 Switch Phase Minimum Inilial (s) 5.0 38.0 38.0 5.0 38.0 12.0 1	Protected Phases	5	2		1	6		4			8		
Switch Phase Minimum Initial (s) 5.0 38.0 38.0 5.0 38.0 12.0	Permitted Phases												
Minimum Initial (s) 5.0 38.0 38.0 5.0 38.0 12.0 <td></td> <td>5</td> <td>2</td> <td>2</td> <td>1</td> <td>6</td> <td>4</td> <td>4</td> <td>4</td> <td>8</td> <td>8</td> <td>8</td> <td></td>		5	2	2	1	6	4	4	4	8	8	8	
Minimum Split (s) 8.0 56.0 56.0 8.0 56.0 54.0 56.0 61.0													
Total Split (s) 10.0 56.0 56.0 10.0 56.0 54.0 54.0 54.0 54.0 54.0 54.0 Total Split (%) 8.3% 46.7% 46.7% 8.3% 46.7% 45.0%	• •												
Total Split (%) 8.3% 46.7% 8.3% 46.7% 45.0% 46.0% 45.0% 45.0% 45.0% 45.0% 45.0% 45.0% 45.0% 45.0% 45.0% 45.0% 40.0 20.0% 50.1													
Yellow Time (s) 3.0 4.6 4.6 3.0 4.6 All All All 2.3 <th2.4< th=""> <th2.17< th=""> 2.4 2.1</th2.17<></th2.4<>													
All-Red Time (s) 0.0 2.3 <td>Total Split (%)</td> <td></td> <td></td> <td></td> <td>8.3%</td> <td>46.7%</td> <td>45.0%</td> <td>45.0%</td> <td></td> <td>45.0%</td> <td></td> <td></td> <td></td>	Total Split (%)				8.3%	46.7%	45.0%	45.0%		45.0%			
Lost Time Adjust (s)0.0<	Yellow Time (s)		4.6		3.0					4.6			
Total Lost Time (s)3.06.96.93.06.96.96.96.96.96.96.96.9Lead/LagLeadLagLeadLagLeadLagLead-Lag Optimize?YesYesYesYesRecall ModeNoneMaxMaxNoneMaxNoneNoneNoneNoneNoneNonev/c Ratio1.100.870.500.530.450.920.150.210.140.420.66Control Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Delay0.00.00.00.00.00.00.00.00.00.0Total Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Delay0.00.00.00.00.00.00.00.00.00.00.0Total Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Length 50th (m)~54.0143.97.98.749.654.512.80.06.342.544.2Queue Length 95th (m)#112.4#182.131.3#20.362.6#99.623.110.613.963.075.5Internal Link Dist (m)1347.7595.11219.0135.0175.0220.0Base Capacity (0.0								
Lead/Lag Lead Lag Lag Lead Lag Yes													
Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Recall Mode None Max Max None Max None						6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Recall ModeNoneMaxMaxNoneMaxNoneNoneNoneNoneNoneNoneNoneNonev/c Ratio1.100.870.500.530.450.920.150.210.140.420.66Control Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Delay0.00.00.00.00.00.00.00.00.00.00.0Total Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Length 50th (m)~54.0143.97.98.749.654.512.80.06.342.544.2Queue Length 95th (m)#112.4#182.131.3#20.362.6#99.623.110.613.963.075.5Internal Link Dist (m)1347.7595.11219.0363.7220.0Base Capacity (vph)31722379691612003365758659400788779Starvation Cap Reductn0000000000000Spillback Cap Reductn00000000000000 <t< td=""><td></td><td></td><td>Lag</td><td>Lag</td><td>Lead</td><td>Lag</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			Lag	Lag	Lead	Lag							
v/c Ratio1.100.870.500.530.450.920.150.210.140.420.66Control Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Delay0.00.00.00.00.00.00.00.00.00.00.0Total Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Length Soth (m)-54.0143.97.98.749.654.512.80.06.342.544.2Queue Length 95th (m)#112.4#182.131.3#20.362.6#99.623.110.613.963.075.5Internal Link Dist (m)1347.7595.11219.0363.7220.0Base Capacity (vph)31722379691612003365758659400788779Starvation Cap Reductn0000000000000Storage Cap Reductn000000000000000		Yes	Yes	Yes	Yes	Yes							
Control Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Delay0.00.00.00.00.00.00.00.00.00.00.00.0Total Delay103.235.05.928.424.270.424.85.125.129.421.7Queue Length 50th (m)-54.0143.97.98.749.654.512.80.06.342.544.2Queue Length 95th (m)#112.4#182.131.3#20.362.6#99.623.110.613.963.075.5Internal Link Dist (m)1347.7595.11219.0363.7363.7Turn Bay Length (m)240.0150.0230.0210.0135.0175.0220.0Base Capacity (vph)31722379691612003365758659400788779Starvation Cap Reductn000000000000Storage Cap Reductn000000000000Storage Cap Reductn000000000000													
Queue Delay 0.0													
Total Delay 103.2 35.0 5.9 28.4 24.2 70.4 24.8 5.1 25.1 29.4 21.7 Queue Length 50th (m) ~54.0 143.9 7.9 8.7 49.6 54.5 12.8 0.0 6.3 42.5 44.2 Queue Length 95th (m) #112.4 #182.1 31.3 #20.3 62.6 #99.6 23.1 10.6 13.9 63.0 75.5 Internal Link Dist (m) 1347.7 595.1 1219.0 363.7 363.7 Turn Bay Length (m) 240.0 150.0 230.0 210.0 135.0 175.0 220.0 Base Capacity (vph) 317 2237 969 161 2003 365 758 659 400 788 779 Starvation Cap Reductn 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Queue Length 50th (m) 54.0 143.9 7.9 8.7 49.6 54.5 12.8 0.0 6.3 42.5 44.2 Queue Length 95th (m) #112.4 #182.1 31.3 #20.3 62.6 #99.6 23.1 10.6 13.9 63.0 75.5 Internal Link Dist (m) 1347.7 595.1 1219.0 363.7 Turn Bay Length (m) 240.0 150.0 230.0 210.0 135.0 175.0 220.0 Base Capacity (vph) 317 2237 969 161 2003 365 758 659 400 788 779 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0	Queue Delay												
Queue Length 95th (m) #112.4 #182.1 31.3 #20.3 62.6 #99.6 23.1 10.6 13.9 63.0 75.5 Internal Link Dist (m) 1347.7 595.1 1219.0 363.7 Turn Bay Length (m) 240.0 150.0 230.0 210.0 135.0 175.0 220.0 Base Capacity (vph) 317 2237 969 161 2003 365 758 659 400 788 779 Starvation Cap Reductn 0													
Internal Link Dist (m) 1347.7 595.1 1219.0 363.7 Turn Bay Length (m) 240.0 150.0 230.0 210.0 135.0 175.0 220.0 Base Capacity (vph) 317 2237 969 161 2003 365 758 659 400 788 779 Starvation Cap Reductn 0													
Turn Bay Length (m)240.0150.0230.0210.0135.0175.0220.0Base Capacity (vph)31722379691612003365758659400788779Starvation Cap Reductn00000000000Spillback Cap Reductn0000000000Storage Cap Reductn000000000		#112.4		31.3	#20.3		#99.6		10.6	13.9		75.5	
Base Capacity (vph)31722379691612003365758659400788779Starvation Cap Reductn00000000000Spillback Cap Reductn00000000000Storage Cap Reductn0000000000			1347.7			595.1		1219.0			363.7		
Starvation Cap Reductn 0													
Spillback Cap Reductin 0											788		
Storage Cap Reductin 0		0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio 1.10 0.87 0.50 0.53 0.45 0.78 0.12 0.12 0.35 0.58		0											
	Reduced v/c Ratio	1.10	0.87	0.50	0.53	0.45	0.78	0.12	0.18	0.12	0.35	0.58	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 113.2 Natural Cycle: 120

Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 108: Dixie Road & Mayfield Road

Forecast 2041 AM

Synchro 9 Report Page 11

HCM Signalized Intersection Capacity Analysis 108: Dixie Road & Mayfield Road

	≯	-	¥	£	+	Ł	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>٦</u>	+++	- T	<u>آ</u>	<u> ተተጉ</u>		<u>آ</u>	- †	- T	<u>آ</u>	- †	- T
Traffic Volume (vph)	348	1942	487	86	889	5	283	93	120	46	278	449
Future Volume (vph)	348	1942	487	86	889	5	283	93	120	46	278	449
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1674	4902	1617	1587	4592		1690	1812	1408	1304	1883	1601
Flt Permitted	0.25	1.00	1.00	0.08	1.00		0.49	1.00	1.00	0.70	1.00	1.00
Satd. Flow (perm)	447	4902	1617	133	4592		874	1812	1408	956	1883	1601
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	348	1942	487	86	889	5	283	93	120	46	278	449
RTOR Reduction (vph)	0	0	232	0	1	0	0	0	78	0	0	122
Lane Group Flow (vph)	348	1942	255	86	893	0	283	93	42	46	278	327
Heavy Vehicles (%)	9%	7%	1%	15%	14%	33%	8%	6%	16%	40%	2%	2%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2	1 01111	1	6		1 01111	4	1 01111	1 01111	8	1 01111
Permitted Phases	2	_	2	6	-		4		4	8		8
Actuated Green, G (s)	58.7	51.7	51.7	55.5	50.1		39.9	39.9	39.9	39.9	39.9	39.9
Effective Green, g (s)	58.7	51.7	51.7	55.5	50.1		39.9	39.9	39.9	39.9	39.9	39.9
Actuated g/C Ratio	0.52	0.45	0.45	0.49	0.44		0.35	0.35	0.35	0.35	0.35	0.35
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	306	2227	734	133	2021		306	635	493	335	660	561
v/s Ratio Prot	c0.07	0.40	701	0.03	0.19		000	0.05	170	000	0.15	001
v/s Ratio Perm	c0.52	0110	0.16	0.28	0117		c0.32	0100	0.03	0.05	0110	0.20
v/c Ratio	1.14	0.87	0.35	0.65	0.44		0.92	0.15	0.09	0.14	0.42	0.58
Uniform Delay, d1	24.1	28.1	20.1	21.7	22.1		35.5	25.3	24.7	25.2	28.2	30.2
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	93.8	5.1	1.3	13.9	0.7		33.5	0.2	0.2	0.4	0.9	2.4
Delay (s)	117.9	33.1	21.4	35.5	22.8		69.0	25.5	24.9	25.6	29.1	32.5
Level of Service	F	C	C	D	C		E	C	C	C	C	C
Approach Delay (s)		41.7	Ű	D	24.0		_	50.2	Ŭ	Ŭ	30.9	Ű
Approach LOS		D			C			D			C	
Intersection Summary												
HCM 2000 Control Delay			37.4	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		1.07									
Actuated Cycle Length (s)			113.8	S	um of lost	t time (s)			16.8			
Intersection Capacity Utiliz	ation		101.8%	IC	CU Level o	of Service	:		G			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 109: Dixie Road & Countryside Drive

	≯	-	F	f	-	Ł	*	Ť	1	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	- ከ	- 11	- T	<u>آ</u>	- ++	- 7	<u>٦</u>	- †	- T	- ሽ	÷.	
Traffic Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	
Future Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	
Lane Group Flow (vph)	17	434	195	70	222	49	55	280	162	246	738	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	custom	Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		2	1		
Detector Phase	2	2	2	2	2	2	1	1	2	1	1	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	30.0	30.0	12.0	30.0	30.0	
Minimum Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	36.6	36.6	35.2	36.6	36.6	
Total Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	53.6	53.6	35.2	53.6	53.6	
Total Split (%)	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	60.4%	60.4%	39.6%	60.4%	60.4%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.2	4.2	4.0	4.2	4.2	
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2	3.2	2.4	2.4	3.2	2.4	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	7.2	6.6	6.6	
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lag	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Max	Max	None	Max	Max	
v/c Ratio	0.05	0.44	0.35	0.31	0.22	0.10	0.22	0.26	0.31	0.40	0.70	
Control Delay	21.9	26.3	6.5	27.5	23.7	7.3	13.7	11.2	5.6	14.0	18.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.9	26.3	6.5	27.5	23.7	7.3	13.7	11.2	5.6	14.0	18.8	
Queue Length 50th (m)	1.8	27.6	1.5	8.1	13.2	0.0	4.1	21.7	0.0	20.9	79.7	
Queue Length 95th (m)	6.0	39.2	14.6	18.2	21.0	6.8	11.4	36.6	11.9	38.9	125.7	
Internal Link Dist (m)		1345.4			805.1			1436.4			1219.0	
Turn Bay Length (m)	150.0		140.0	80.0		150.0	190.0			150.0		
Base Capacity (vph)	394	1225	643	283	1225	569	251	1061	615	616	1059	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.35	0.30	0.25	0.18	0.09	0.22	0.26	0.26	0.40	0.70	
Intersection Summary												
Cycle Length: 88.8												
Actuated Cycle Length: 83.8												
Natural Cycle: 75												
Control Type: Semi Act-Unco	oord											
Splits and Phases: 109: Di	ivie Road	& Countr	vside Driv	IA								

Splits and Phases: 109: Dixie Road & Countryside Drive

1 a1	₽ ₂₂	
50.6 s	05.2 s	

HCM Signalized Intersection Capacity Analysis 109: Dixie Road & Countryside Drive

	≯	-	F	4	-	Ł	•	Ť	1	4	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	- ††	1	1	- † †	1	5	- †	7	5	4	
Traffic Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	15
Future Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	7.2	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1823	3650	1559	1734	3650	1598	1824	1883	1512	1772	1878	
Flt Permitted	0.61	1.00	1.00	0.46	1.00	1.00	0.23	1.00	1.00	0.59	1.00	
Satd. Flow (perm)	1176	3650	1559	845	3650	1598	445	1883	1512	1093	1878	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	17	434	195	70	222	49	55	280	162	246	723	15
RTOR Reduction (vph)	0	0	132	0	0	36	0	0	118	0	1	0
Lane Group Flow (vph)	17	434	63	70	222	13	55	280	44	246	737	0
Confl. Peds. (#/hr)	1		5	5		1	1					1
Heavy Vehicles (%)	0%	0%	3%	5%	0%	0%	0%	2%	8%	3%	2%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	custom	Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		2	1		
Actuated Green, G (s)	22.7	22.7	22.7	22.7	22.7	22.7	47.2	47.2	22.7	47.2	47.2	
Effective Green, g (s)	22.7	22.7	22.7	22.7	22.7	22.7	47.2	47.2	22.7	47.2	47.2	
Actuated g/C Ratio	0.27	0.27	0.27	0.27	0.27	0.27	0.56	0.56	0.27	0.56	0.56	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	7.2	6.6	6.6	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	318	989	422	229	989	433	250	1061	410	616	1059	
v/s Ratio Prot		c0.12			0.06			0.15			c0.39	
v/s Ratio Perm	0.01		0.04	0.08		0.01	0.12		0.03	0.23		
v/c Ratio	0.05	0.44	0.15	0.31	0.22	0.03	0.22	0.26	0.11	0.40	0.70	
Uniform Delay, d1	22.6	25.2	23.2	24.2	23.7	22.4	9.1	9.3	22.9	10.3	13.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.7	0.3	1.6	0.2	0.1	2.0	0.6	0.2	1.9	3.8	
Delay (s)	22.7	25.9	23.5	25.8	23.9	22.5	11.1	10.0	23.1	12.2	16.9	
Level of Service	С	С	С	С	С	С	В	A	С	В	В	
Approach Delay (s)		25.1			24.1			14.4			15.7	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.61						_			
Actuated Cycle Length (s)	.,		83.7	S	um of los	t time (s)			13.8			
Intersection Capacity Utiliza	ation		110.7%			of Service	è.		Н			
Analysis Period (min)	-		15									
c Critical Lano Group												

c Critical Lane Group

Queues 110: Dixie Road & Sandalwood Parkway East

07/11/2019)
------------	---

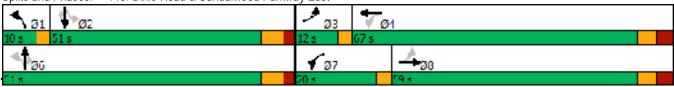
	٦	-	£	-	1	Ť	۴	1	Ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	ተተጉ	<u>آ</u>	ትት _ው	- ሻ	- ††	- T	ሻ	- ++	7	
Traffic Volume (vph)	431	2848	254	1570	100	355	87	90	835	458	
Future Volume (vph)	431	2848	254	1570	100	355	87	90	835	458	
Lane Group Flow (vph)	431	3250	254	1734	100	355	87	90	835	458	
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm	Perm	NA	Perm	
Protected Phases	3	8	7	4	1	6			2		
Permitted Phases	8		4		6		6	2		2	
Detector Phase	3	8	7	4	1	6	6	2	2	2	
Switch Phase											
Minimum Initial (s)	5.0	39.7	5.0	39.7	5.0	39.0	39.0	39.0	39.0	39.0	
Minimum Split (s)	8.0	47.4	8.0	47.4	8.0	46.0	46.0	46.0	46.0	46.0	
Total Split (s)	12.0	59.0	20.0	67.0	10.0	61.0	61.0	51.0	51.0	51.0	
Total Split (%)	8.6%	42.1%	14.3%	47.9%	7.1%	43.6%	43.6%	36.4%	36.4%	36.4%	
Yellow Time (s)	3.0	4.0	3.0	4.0	3.0	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	3.7	0.0	3.7	0.0	2.4	2.4	2.4	2.4	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.7	3.0	7.7	3.0	7.0	7.0	7.0	7.0	7.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead			Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes	Yes	Yes	
Recall Mode	None	Max	None	Max	None	None	None	None	None	None	
v/c Ratio	2.51	1.74	0.93	0.80	0.56	0.27	0.14	0.30	0.78	0.80	
Control Delay	714.2	364.3	75.8	37.9	38.8	30.4	5.9	40.0	49.6	38.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	714.2	364.3	75.8	37.9	38.8	30.4	5.9	40.0	49.6	38.4	
Queue Length 50th (m)	~169.3	~453.6	49.2	139.7	15.7	32.3	0.0	17.4	100.9	69.8	
Queue Length 95th (m)	#229.9	#473.9	#97.4	157.7	26.9	43.5	10.1	31.6	123.2	111.0	
Internal Link Dist (m)		672.8		108.5		503.2			1436.4		
Turn Bay Length (m)	150.0		130.0		125.0		125.0	120.0		120.0	
Base Capacity (vph)	172	1867	273	2156	177	1357	633	308	1117	592	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	2.51	1.74	0.93	0.80	0.56	0.26	0.14	0.29	0.75	0.77	
Intersection Summary											

Intersection Summary

Cycle Length: 140

Actuated Cycle Length: 138.3 Natural Cycle: 150

Control Type: Semi Act-Uncoord


Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases:	110: Dixie Road & Sandalwood Parkway Ea	st
--------------------	---	----

Forecast 2041 AM

Synchro 9 Report Page 15

07/11/2019

	۶	-	F	£	•	×,	*	Ť	1	Ý	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- ##%		ሻ	<u>†</u> †₽,		5	+ †	7	5	- † †	7
Traffic Volume (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
Future Volume (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	0.95	1.00	1.00	0.95
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.97	1.00	1.00
Frt	1.00	0.98		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1755	5001		1755	5007		1754	3476	1485	1709	3510	1500
Flt Permitted	0.08	1.00		0.07	1.00		0.14	1.00	1.00	0.54	1.00	1.00
Satd. Flow (perm)	144	5001		136	5007		252	3476	1485	970	3510	1500
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
RTOR Reduction (vph)	0	13	0	0	9	0	0	0	54	0	0	118
Lane Group Flow (vph)	431	3237	0	254	1725	0	100	355	33	90	835	340
Confl. Peds. (#/hr)	11		32	32		11	33		33	33		33
Heavy Vehicles (%)	4%	2%	4%	4%	3%	3%	4%	5%	4%	4%	4%	3%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	3	8		7	4		1	6			2	
Permitted Phases	8			4			6		6	2		2
Actuated Green, G (s)	60.3	51.3		71.3	59.3		52.3	52.3	52.3	42.3	42.3	42.3
Effective Green, g (s)	60.3	51.3		71.3	59.3		52.3	52.3	52.3	42.3	42.3	42.3
Actuated g/C Ratio	0.44	0.37		0.52	0.43		0.38	0.38	0.38	0.31	0.31	0.31
Clearance Time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	167	1855		269	2146		171	1314	561	296	1073	458
v/s Ratio Prot	c0.17	0.65		c0.12	0.34		c0.03	0.10			c0.24	
v/s Ratio Perm	c0.95			0.37			0.19		0.02	0.09		0.23
v/c Ratio	2.58	1.74		0.94	0.80		0.58	0.27	0.06	0.30	0.78	0.74
Uniform Delay, d1	34.4	43.5		43.9	34.4		31.5	29.8	27.3	36.7	43.7	43.1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	728.6	337.5		40.7	3.3		7.7	0.2	0.1	1.2	4.2	7.6
Delay (s)	763.0	381.0		84.5	37.7		39.2	30.0	27.4	38.0	48.0	50.8
Level of Service	F	F		F	D		D	С	С	D	D	D
Approach Delay (s)		425.7			43.7			31.3			48.2	
Approach LOS		F			D			С			D	
Intersection Summary												
HCM 2000 Control Delay			228.8	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Cap	acity ratio		1.69									
Actuated Cycle Length (s)			138.3		um of lost				20.7			
Intersection Capacity Utiliz	ation		164.8%	IC	CU Level of	of Service	9		Н			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	۶	¥	1	Ť	Ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	5			ب			
Traffic Volume (veh/h)	21	0	109	151	0	0	
Future Volume (Veh/h)	21	0	109	151	0	0	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	21	0	109	151	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	369	0	0				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	369	0	0				
tC, single (s)	6.4	6.3	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.4	2.2				
p0 queue free %	96	100	93				
cM capacity (veh/h)	593	1070	1630				
Direction, Lane #	EB 1	NB 1					
Volume Total	21	260					
Volume Left	21	109					
Volume Right	0	0					
cSH	593	1630					
Volume to Capacity	0.04	0.07					
Queue Length 95th (m)	0.8	1.5					
Control Delay (s)	11.3	3.4					
Lane LOS	В	А					
Approach Delay (s)	11.3	3.4					
Approach LOS	В						
Intersection Summary							
Average Delay			4.0				
Intersection Capacity Utilization	on		24.0%	IC	CU Level c	of Service	
Analysis Period (min)			15				

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type	EBL 1 112 112 112 Perm	EBT 2> 1132 1132 1220 NA	EBR 0 88 88 0	WBL 1 123 123 123 Perm	WBT 2 632 632 632 NA	WBR 1 217 217 217 Perm	NBL 1 101 101 101 Perm	NBT 1 160 160 160 NA	NBR 1 392 392 392 Perm	SBL 1 1037 1037 1037 pm+pt	SBT 1> 392 392 735 NA	SBR 0 343 343 0
Protected Phases	I CI III	2		I CI III	2	I CI III	I CI III	4	I CI III	3	4	
Permitted Phases	2	-		2		2	4	-	4	4	-	
Detector Phase	2	2		2	2	2	4	4	4	3	4	
Switch Phase												
Minimum Initial (s)	25.0	25.0		25.0	25.0	25.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	31.3	31.3		31.3	31.3	31.3	31.8	31.8	31.8	8.0	31.8	
Total Split (s)	65.0	65.0		65.0	65.0	65.0	40.0	40.0	40.0	35.0	40.0	
Total Split (%)	46.4%	46.4%		46.4%	46.4%	46.4%	28.6%	28.6%	28.6%	25.0%	28.6%	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.3	2.3		2.3	2.3	2.3	2.8	2.8	2.8	0.0	2.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lead/Lag							Lag	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max		Max	Max	Max	None	None	None	None	None	
v/c Ratio	0.48	0.84		2.05	0.45	0.29	1.94	0.39	0.95	1.48	1.73	
Control Delay	38.4	42.7		549.7	30.5	4.1	515.3	48.1	79.1	251.8	369.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	38.4	42.7		549.7	30.5	4.1	515.3	48.1	79.1	251.8	369.2	
Queue Length 50th (m)	20.6	144.5		~49.0	60.2	0.0	~39.5	34.5	88.6		~272.7	
Queue Length 95th (m)	39.2	172.0		#72.2	75.7	13.8	#74.4	54.3		#355.5		5
Internal Link Dist (m)		613.9			728.0			1200.6			493.9	
Turn Bay Length (m)	90.0			150.0		130.0			100.0	100.0		
Base Capacity (vph)	231	1451		60	1391	759	52	414	413	699	425	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.48	0.84		2.05	0.45	0.29	1.94	0.39	0.95	1.48	1.73	

Intersection Summary Cycle Length: 140 Actuated Cycle Length: 140 Natural Cycle: 75 Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Forecast 2041 AM Synchro 9 Report

Page 0

HCM Signalized Intersection Capacity Analysis 101: Kennedy Road North/Kennedy Road & Mayfield Road 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2>	0	1	2	1	1	1	1	1	1>	0
Traffic Volume (vph)	112	1132	88	123	632	217	101	160	392	1037	392	343
Future Volume (vph)	112	1132	88	123	632	217	101	160	392	1037	392	343
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1601	3453		1772	3318	1512	1772	1746	1585	1789	1700	
Flt Permitted	0.33	1.00		0.08	1.00	1.00	0.12	1.00	1.00	0.58	1.00	
Satd. Flow (perm)	551	3453		146	3318	1512	225	1746	1585	1100	1700	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	112	1132	88	123	632	217	101	160	392	1037	392	343
RTOR Reduction (vph)	0	4	0	0	0	126	0	0	37	0	22	0
Lane Group Flow (vph)	112	1216	0	123	632	91	101	160	355	1037	713	0
Confl. Peds. (#/hr)	112	1210	0	123	052	91	3	100	555	1037	113	3
Heavy Vehicles (%)	14%	4%	12%	3%	10%	8%	3%	10%	3%	2%	18	8%
-			120									06
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	0	2		0	2	0		4	4	3	4	
Permitted Phases	2			2		2	4		4	4		
Actuated Green, G (s)	58.7	58.7		58.7	58.7	58.7	33.2	33.2	33.2	65.2	33.2	
Effective Green, g (s)	58.7	58.7		58.7	58.7	58.7	33.2	33.2	33.2	65.2	33.2	
Actuated g/C Ratio	0.42	0.42		0.42	0.42	0.42	0.24	0.24	0.24	0.47	0.24	
Clearance Time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	231	1447		61	1391	633	53	414	375	669	403	
v/s Ratio Prot		0.35			0.19			0.09		c0.35	0.42	
v/s Ratio Perm	0.20			c0.84		0.06	c0.45		0.22	0.37		
v/c Ratio	0.48	0.84		2.02	0.45	0.14	1.91	0.39	0.95	1.55	1.77	
Uniform Delay, dl	29.6	36.4		40.6	29.2	25.1	53.4	44.8	52.5	34.2	53.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	7.1	6.0		509.9	1.1	0.5	469.6	1.3	33.3	254.9	356.0	
Delay (s)	36.7	42.5		550.5	30.2	25.6	523.0	46.1	85.8	289.1		
Level of Service	D	D		F	C	C	F	D	F	F	F	
Approach Delay (s)	D	42.0		1	95.0	C	1	143.7	1	1	339.0	
Approach LOS		42.0 D			У Ј. 0 F			I43.7 F			552.0 F	
Approach Los		D			Г			Г			Г	
Intersection Summary												
HCM 2000 Control Delay			178.2	HCM 20	000 Lev	rel of S	Service					F
HCM 2000 Volume to Capacity rati	0			1.86								
Actuated Cycle Length (s)			140.0	Sum of	E lost	time (s	з)					16.1
Intersection Capacity Utilizatio	n			140.39	≩ICU L	evel of	Servio	e				
Analysis Period (min)			15									
c Critical Lane Group												
-												

Н

Queues

103: Kennedy Road North & Sandalwood Parkway East 05/03/2018

Lane Configurations12>012>012>0Traffic Volume (vph)51722241127114812631053944300428182Future Volume (vph)51722241127114812631053944300428182Lane Group Flow (vph)5196301271274031058303006100Turn TypePermNApm+ptNApm+ptNApm+ptNApm+ptNAProtected Phases21674382Detector Phase22167438Switch Phase22167438	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph) 5 1722 241 127 1148 126 310 539 44 300 428 182 Lane Group Flow (vph) 5 1963 0 127 1274 0 310 583 0 300 610 0 Turn Type Perm NA pm+pt NA pm+pt NA pm+pt NA Protected Phases 2 1 6 7 4 3 8 Detector Phase 2 2 1 6 7 4 3 8	Lane Configurations	1	2>	0	1	2>	0	1	2>	0	1	2>	0
Lane Group Flow (vph) 5 1963 0 127 1274 0 310 583 0 300 610 0 Turn Type Perm NA pm+pt NA pm pm+pt NA pm+pt NA pm pm <td< td=""><td>Traffic Volume (vph)</td><td></td><td>1722</td><td>241</td><td>127</td><td>1148</td><td>126</td><td>310</td><td>539</td><td>44</td><td>300</td><td>428</td><td>182</td></td<>	Traffic Volume (vph)		1722	241	127	1148	126	310	539	44	300	428	182
Turn TypePermNApm+ptNApm+ptNAProtected Phases2167438Permitted Phases26489Detector Phase22167438	Future Volume (vph)	5	1722	241	127	1148	126	310	539	44	300	428	182
Protected Phases 2 1 6 7 4 3 8 Permitted Phases 2 6 4 8 9 Detector Phase 2 2 1 6 7 4 3 8	Lane Group Flow (vph)	5	1963	0	127	1274	0	310	583	0	300	610	0
Permitted Phases 2 6 4 8 Detector Phase 2 2 1 6 7 4 3 8	Turn Type	Perm	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Detector Phase 2 2 1 6 7 4 3 8	Protected Phases		2		1	6		7	4		3	8	
	Permitted Phases	2			6			4			8		
Switch Phase	Detector Phase	2	2		1	6		7	4		3	8	
	Switch Phase												
Minimum Initial (s) 8.0 8.0 5.0 8.0 5.0 8.0 5.0 8.0	Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	8.0		5.0	8.0	
Minimum Split (s) 36.0 36.0 8.0 36.0 8.0 40.0 8.0 40.0	Minimum Split (s)	36.0	36.0		8.0	36.0		8.0	40.0		8.0	40.0	
Total Split (s) 69.0 69.0 10.0 79.0 12.0 45.0 16.0 49.0	Total Split (s)	69.0	69.0		10.0	79.0		12.0	45.0		16.0	49.0	
Total split (%) 49.3% 49.3% 7.1% 56.4% 8.6% 32.1% 11.4% 35.0%	Total Split (%)	49.3%	49.3%		7.1%	56.4%		8.6%	32.1%		11.4%	35.0%	
Yellow Time (s) 4.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0	Yellow Time (s)	4.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s) 2.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0	All-Red Time (s)	2.0	2.0		0.0	2.0		0.0	2.0		0.0	2.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s) 6.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0	Total Lost Time (s)	6.0	6.0		3.0	6.0		3.0	6.0		3.0	6.0	
Lead/Lag Lag Lag Lead Lead Lag Lead Lag	Lead/Lag	Lag	Lag		Lead			Lead	Lag		Lead	Lag	
Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes	Lead-Lag Optimize?	Yes	Yes		Yes			Yes	Yes				
Recall Mode None None None None Max None Max	Recall Mode	None	None		None	None		None	Max		None	Max	
v/c Ratio 0.05 1.23 0.86 0.69 1.10 0.61 0.95 0.61	v/c Ratio	0.05	1.23		0.86	0.69		1.10	0.61		0.95	0.61	
Control Delay 23.4 143.2 70.9 27.4 117.6 46.6 71.4 40.9	Control Delay	23.4	143.2		70.9	27.4		117.6	46.6		71.4	40.9	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay 23.4 143.2 70.9 27.4 117.6 46.6 71.4 40.9	Total Delay	23.4	143.2		70.9	27.4		117.6	46.6		71.4	40.9	
Queue Length 50th (m) 0.7 ~324.6 17.0 123.6 ~63.9 67.6 53.3 64.4	Queue Length 50th (m)	0.7	~324.6		17.0			~63.9	67.6		53.3	64.4	
Queue Length 95th (m) 3.4 #363.3 #51.1 146.8 #121.3 85.7 #103.0 82.8	Queue Length 95th (m)	3.4			#51.1	146.8		#121.3	85.7		#103.0	82.8	
Internal Link Dist (m) 240.4 84.0 354.2 1159.5	Internal Link Dist (m)		240.4			84.0			354.2				
Turn Bay Length (m) 75.0 85.0 100.0 70.0	Turn Bay Length (m)	75.0			85.0			100.0			70.0		
Base Capacity (vph) 108 1597 147 1834 282 956 317 999	Base Capacity (vph)	108	1597		147	1834		282	956		317	999	
Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0		0	0		0	0		0	0		0	0	
Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0		0	0		0	0		0	0		0	0	
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0		0	0		0	0		0			0	0	
Reduced v/c Ratio 0.05 1.23 0.86 0.69 1.10 0.61 0.95 0.61		0.05	1.23		0.86	0.69		1.10	0.61		0.95	0.61	

Intersection Summary Cycle Length: 140 Actuated Cycle Length: 140 Natural Cycle: 145 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 103: Kennedy Road North & Sandalwood Parkway East 05/03/2018

Movement Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	EBL 1 5 5 1900 6.0 1.00 0.95 1674 0.14 239 1.00 5 9% Perm 2 63.0 63.0 0.45 6.0 107 0.02 0.05 21.6 1.00 0.4 22.0 C	EBT 2> 1722 1900 6.0 0.95 0.98 1.00 3530 1.00 3530 1.00 1722 8 1955 1% NA 2 63.0 63.0 0.45 6.0 5.0 1588 c0.55 1.23 38.5 1.00 109.8 148.3 F 148.0 F	EBR 0 241 241 1900	WBL 1 127 1900 3.0 1.00 1.00 0.95 1807 0.06 115 1.00 127 0 127 1% pm+pt 1 6 73.0 73.0 0.52 3.0 5.0 144 c0.04 0.41 0.88 35.1 1.00 44.5 79.6 E	WBT 2> 1148 1900 6.0 0.95 0.99 1.00 3508 1.00 3508 1.00 1148 6 2% NA 6 73.0 73.0 73.0 73.0 73.0 0.52 6.0 5.0 1829 0.36 0.69 25.1 1.00 1.5 26.6 C 31.4 C	WBR 0 126 126 1900	NBL 1 310 1900 3.0 1.00 1.00 0.95 1772 0.30 563 1.00 310 3% pm+pt 7 4 48.0 48.0 0.34 3.0 5.0 270 c0.07 c0.32 1.15 43.5 1.00 100.8 144.4 F	NBT 2> 539 539 1900 6.0 0.95 0.99 1.00 3417 1.00 539 4 579 6% NA 4 39.0 39.0 0.28 6.0 5.0 951 0.17 0.61 43.9 1.00 2.9 46.8 D 80.6 F	NBR 0 44 44 1900	SBL 1 300 300 1900 3.0 1.00 0.95 1789 0.25 470 1.00 300 2% pm+pt 3 55.0 0.39 3.0 55.0 0.39 3.0 55.0 0.39 3.0 5.0 307 c0.09 0.29 0.29 0.29 0.29 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	SBT 2> 428 428 1900 6.0 0.95 0.96 1.00 3146 1.00 3146 1.00 428 34 576 1% NA 8 43.0 43.0 0.31 6.0 5.06 0.18 0.60 41.1 1.00 2.7 43.9 D 56.6 E	SBR 0 182 182 1900
Intersection Summary												
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio		88.7	HCM 20 1.17	000 Lev	el of S	Service					F	
Actuated Cycle Length (s) Intersection Capacity Utilization	n		140.0			time (s evel of	s) Servic	e				18.0
Analysis Period (min)			15									

Η

c Critical Lane Group

Forecast 2041 AM Synchro 9 Report

Page 0

Queues

104: Heart Lake Road & Mayfield Road 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3	1	1	3	1	1	1	1	1	1	1
Traffic Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Future Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Lane Group Flow (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Detector Phase	2	2	2	1	6	6	7	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	5.0	12.0	12.0	5.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	35.7	35.7	35.7	8.0	35.7	35.7	8.0	39.9	39.9	39.9	39.9	39.9
Total Split (s)	81.0	81.0	81.0	9.0	90.0	90.0	9.0	50.0	50.0	41.0	41.0	41.0
Total Split (%)	57.9%	57.9%	57.9%	6.4%	64.3%	64.3%	6.4%	35.7%	35.7%	29.3%	29.3%	29.3%
Yellow Time (s)	4.6	4.6	4.6	3.0	4.6	4.6	3.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.1	2.1	2.1	0.0	2.1	2.1	0.0	2.9	2.9	2.9	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lead/Lag	Lag	Lag	Lag	Lead			Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes			Yes	Yes	Yes
Recall Mode	Min	Min	Min	None	Min	Min	None	None	None	None	None	None
v/c Ratio	0.08	0.57	0.38	0.30	0.24	0.02	0.61	0.05	0.08	0.41	0.42	0.29
Control Delay	11.0	14.8	2.1	8.9	7.9	0.1	46.5	37.9	4.8	53.6	51.7	13.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.0	14.8	2.1	8.9	7.9	0.1	46.5	37.9	4.8	53.6	51.7	13.1
Queue Length 50th (m)	2.4	67.8	0.0	3.6	18.7	0.0	32.8	3.4	0.0	14.7	20.2	0.0
Queue Length 95th (m)	6.9	89.7	11.6	8.5	27.6	0.0	57.0	10.0	3.9	30.2	38.2	12.9
Internal Link Dist (m)		258.3			1347.7	7		470.2			409.0	
Turn Bay Length (m)	180.0		280.0	160.0		160.0	210.0		110.0	215.0		130.0
Base Capacity (vph)	482	3596	1279	223	3702	1012	313	825	731	485	646	610
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.45	0.33	0.30	0.20	0.01	0.61	0.03	0.04	0.16	0.17	0.14

Intersection Summary Cycle Length: 140 Actuated Cycle Length: 105.1 Natural Cycle: 95 Control Type: Actuated-Uncoordinated

HCM Signalized Intersection Capacity Analysis 104: Heart Lake Road & Mayfield Road 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3	1	1	3	1	1	1	1	1	1	1
Traffic Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Future Volume (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1738	4948	1601	1772	4683	1266	1738	1921	1633	1825	1902	1633
Flt Permitted	0.36	1.00	1.00	0.10	1.00	1.00	0.57	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	665	4948	1601	190	4683	1266	1038	1921	1633	1429	1902	1633
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	30	1622	423	66	728	14	191	21	32	78	107	83
RTOR Reduction (vph)	0	0	179	0	0	5	0	0	25	0	0	72
Lane Group Flow (vph)	30	1622	244	66	728	9	191	21	7	78	107	11
Heavy Vehicles (%)	5%	6%	2%	3%	12%	29%	5%	08	0%	0%	1%	08
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	101	2	101.	1	6	101	7	4	101.	101	8	1 011
Permitted Phases	2	-	2	6	Ũ	6	4	-	4	8	U	8
Actuated Green, G (s)	60.7	60.7	60.7	68.2	68.2	68.2	23.4	23.4	23.4	14.1	14.1	14.1
Effective Green, q (s)	60.7	60.7	60.7	68.2	68.2	68.2	23.4	23.4	23.4	14.1	14.1	14.1
Actuated g/C Ratio	0.58	0.58	0.58	0.65	0.65	0.65	0.22	0.22	0.22	0.13	0.13	0.13
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	383	2854	923	190	3035	820	272	427	363	191	254	218
v/s Ratio Prot		c0.33		c0.01	0.16		c0.04	0.01			0.06	
v/s Ratio Perm	0.05		0.15	0.21		0.01	c0.11		0.00	0.05		0.01
v/c Ratio	0.08	0.57	0.26	0.35	0.24	0.01	0.70	0.05	0.02	0.41	0.42	0.05
Uniform Delay, dl	9.9	14.0	11.1	8.9	7.7	6.6	37.1	32.2	31.9	41.7	41.8	39.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.4	0.3	2.3	0.1	0.0	9.9	0.1	0.0	3.0	2.4	0.2
Delay (s)	10.0	14.4	11.4	11.2	7.8	6.6	46.9	32.3	32.0	44.7	44.2	39.9
Level of Service	В	В	В	В	A	A	D	С	С	D	D	D
Approach Delay (s)		13.8			8.0			43.7			43.0	
Approach LOS		В			A			D			D	
Intersection Summary												
HCM 2000 Control Delay			16.9	HCM 20)00 Lev	rel of S	Service					В
HCM 2000 Volume to Capacity rati	.0			0.61								
Actuated Cycle Length (s)			105.2	Sum of	E lost	time (s	5)					19.6
Intersection Capacity Utilizatio	n			67.4%	ICU L	evel of	Servic	e				
Analysis Period (min)			15									
c Critical Lane Group												

С

HCM 1	Unsigna	alized	l Inte	ers	section	Capac	city	Analysis	
105:	Heart	Lake	Road	&	Country	zside	Driv	<i>i</i> e	05/03/2018

Movement Lanes Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	EBL	EBT	EBR	WBL 0 0 Stop 0%	WBT	WBR 1 244 244	NBL	NBT 0 0 Free 0%	NBR 1 172 172	SBL 1 597 597	SBT 0 0 Free 0%	SBR
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage				1.00 0		1.00 244		1.00 0	1.00 172	1.00 597	1.00 0	
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked								None			None	
vC, conflicting volume vCl, stage 1 conf vol				1194		0				172		
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s)				1194 6.4		0 6.2				172 4.1		
tF (s) p0 queue free % cM capacity (veh/h)				3.5 100 120		3.3 78 1088				2.2 58 1417		
Direction, Lane # Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	WB 1 244 0 244 1088 0.22 6.0 9.3 A 9.3 A	NB 1 172 0 172 1700 0.10 0.0 0.0	SB 1 597 597 0 1417 0.42 15.0 9.4 A 9.4									
Intersection Summary Average Delay Intersection Capacity Utilizatio	on		7.8		50.4%	ICU L	evel of	Servio	ce			
A Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 106: Heart Lake Road & 410 SB Exit 05/03/2018

Movement Lanes Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	EBL	EBT	EBR	WBL 1 725 725 Stop 0%	WBT	WBR 1 127 127	NBL	NBT 1 133 133 Free 0%	NBR 0 0 0	SBL 0 0 0	SBT 0 0 Free 0%	SBR
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage				1.00 725		1.00 127		1.00 133	1.00	1.00	1.00	
Right turn flare (veh) Median type Median storage veh)								None			None	
Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol				133		133		243		133		
<pre>vC2, stage 2 conf vol vCu, unblocked vol tC, single (s)</pre>				133 6.4		133 6.2				133 4.1		
tC, 2 stage (s) tF (s) p0 queue free % cM capacity (veh/h)				3.5 16 863		3.3 86 922				2.2 100 1464		
Direction, Lane # Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS	WB 1 725 725 0 863 0.84 69.8 26.8 D	WB 2 127 0 127 922 0.14 3.3 9.5 A	NB 1 133 0 1700 0.08 0.0 0.0									
Approach Delay (s) Approach LOS	24.2 C		0.0									
Intersection Summary Average Delay Intersection Capacity Utilizatio A	on		20.9		53.8%	ICU L	evel of	E Servio	ce			
Analysis Period (min)			15									

Queues 107: Heart Lake Road & Sandalwood Parkway East 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3>	0	1	2	1	1	1	1	1	1	1
Traffic Volume (vph)	53	2106	108	230	1804	46	33	34	99	357	240	128
Future Volume (vph)	53	2106	108	230	1804	46	33	34	99	357	240	128
Lane Group Flow (vph)	53	2214	0	230	1804	46	33	34	99	357	240	128
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6		6	4		4	8		8
Detector Phase	5	2		1	6	6	7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	40.0		5.0	40.0	40.0	5.0	8.0	8.0	5.0	8.0	8.0
Minimum Split (s)	8.0	46.0		8.0	46.0	46.0	8.0	50.0	50.0	8.0	50.0	50.0
Total Split (s)	10.0	69.0		10.0	69.0	69.0	10.0	51.0	51.0	10.0	51.0	51.0
Total Split (%)	7.1%	49.3%		7.1%	49.3%	49.3%	7.1%	36.4%	36.4%	7.1%	36.4%	36.4%
Yellow Time (s)	3.0	4.0		3.0	4.0	4.0	3.0	5.0	5.0	3.0	5.0	5.0
All-Red Time (s)	0.0	2.0		0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Max		None	Max	Max	None	None	None	None	None	None
v/c Ratio	0.30	0.78		1.30	0.90	0.05	0.13	0.11	0.30	1.00	0.65	0.31
Control Delay	12.9	23.9		196.8	31.3	1.1	29.8	40.1	10.0	87.9	52.0	8.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.9	23.9		196.8	31.3	1.1	29.8	40.1	10.0	87.9	52.0	8.7
Queue Length 50th (m)	3.8	135.0		~49.7	185.4	0.0	5.0	6.1	0.0	65.7	48.1	0.0
Queue Length 95th (m)	9.6	178.2		#104.1	#270.9	1.9	11.6	14.1	12.4	#107.2		14.0
Internal Link Dist (m)		149.0			637.0			433.6			218.7	
Turn Bay Length (m)	150.0			190.0					85.0	200.0		150.0
Base Capacity (vph)	181	2838		177	2008	923	261	734	673	357	727	684
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.78		1.30	0.90	0.05	0.13	0.05	0.15	1.00	0.33	0.19

Intersection Summary Cycle Length: 140 Actuated Cycle Length: 114.6 Natural Cycle: 135 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 107: Heart Lake Road & Sandalwood Parkway East 05/03/2018

Movement Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s)	EBL 1 53 53 1900 3.0 1.00 1.00 0.95 1825 0.06 120 1.00 53 0% pm+pt 5 2 69.6 69.6 0.60 3.0 5.0 152 0.02 0.19 0.35 21.3 1.00 2.9 24.2 C	EBT 3> 2106 2106 1900 6.0 0.91 0.99 1.00 5125 1.00 2106 3 2211 1% NA 2 64.1 64.1 0.55 6.0 5.0 2819 0.43 0.78 20.7 1.00 2.3 23.0 C 23.0	EBR 0 108 1900	WBL 1 230 230 1900 3.0 1.00 1.00 0.95 1789 0.06 115 1.00 230 2% pm+pt 6 72.6 72.6 72.6 72.6 72.6 0.62 3.0 5.0 172 c0.08 c0.75 1.34 31.8 1.00 185.7 217.5 F	WBT 2 1804 1804 1900 6.0 0.95 1.00 3510 1.00 3510 1.00 1804 0 1804 4% NA 6 65.6 65.6 6.0 5.0 1976 0.51 0.91 22.9 1.00 7.9 30.8 C 51.0	WBR 1 46 46 1900 6.0 1.00 0.85 1.00 1555 1.00 46 20 26 5% Perm 6 65.6 65.6 65.6 0.56 6.0 5.0 875 0.02 0.03 11.3 1.00 0.1 11.4 B	NBL 1 33 33 1900 3.0 1.00 1.00 0.95 1674 0.47 826 1.00 33 0 33 9% pm+pt 7 4 23.4 23.4 23.4 0.20 3.0 1.95 0.01 0.03 0.17 38.0 1.00 0.95 0.01 0.03 0.17 38.0 D	4 19.4 0.17 7.0 5.0 316 0.02 0.11 41.2 1.00 0.3 41.5 D	NBR 1 99 99 1900 7.0 1.00 0.85 1.00 1585 1.00 1585 1.00 99 83 16 3% Perm 4 19.4 19.4 19.4 0.17 7.0 5.0 263 0.01 0.06 40.9 1.00 0.2 41.1 D	SBL 1 357 357 1900 3.0 1.00 1.00 0.95 1807 0.64 1211 1.00 357 0 357 1% pm+pt 3 8 29.4 29.4 0.25 3.0 5.0 341 c0.06 c0.20 1.05 43.4 1.00 61.5 104.9 F	SBT 1 240 240 1900 7.0 1.00 1.00 1.00 1.883 1.00 240 0 240 240 240 2% NA 8 22.4 22.4 0.19 7.0 5.0 362 0.13 0.66 43.6 1.00 5.9 49.5 D 74.9	SBR 1 128 128 1900 7.0 1.00 0.85 1.00 1570 1.00 1570 1.00 128 103 25 4% Perm 8 22.4 22.4 0.19 7.0 5.0 301 0.02 0.08 38.6 1.00 0.2 38.9 D
Approach Delay (s)	C	23.0		F	51.0	В	D	40.7	D	F	74.9	D
Approach LOS		С			D			D			Е	
Intersection Summary HCM 2000 Control Delay			41.9		000 Lev	el of §	Service					D
HCM 2000 Volume to Capacity rati Actuated Cycle Length (s)			116.5			time (s	,					19.0
Intersection Capacity Utilizatio Analysis Period (min) c Critical Lane Group	on		15	97.4%	ICU L	evel of	Servic	e				

F

Queues 108: Dixie Road & Mayfield Road 05/03/2018

Lane Group	EBL	EBT 3	EBR	WBL	WBT 3>	WBR 0	NBL 1	NBT 1	NBR	SBL	SBT 1	SBR 1
Lane Configurations	1 348	3 1942	1 487	1 86	889	5	⊥ 283	⊥ 93	1 120	1 46	1 278	⊥ 449
Traffic Volume (vph) Future Volume (vph)	348	1942	487	86	889	5 5	203 283	93 93	120	40 46	278	449
Lane Group Flow (vph)	348	1942	487	86	894	5	203 283	93 93	120	40 46	278	449
Turn Type		1942 NA	407 Perm		NA	0	205 Perm	NA	Perm	40 Perm	270 NA	Perm
Protected Phases	pm+pt 5	2	Perm	pm+pt 1	NА 6		Perm	1 4	Perm	Perm	8	Perm
Permitted Phases	2	2	2	6	0		4	7	4	8	0	8
Detector Phase	5	2	2	1	6		4	4	4	8	8	о 8
Switch Phase	5	2	2	T	0		4	7	4	0	0	0
Minimum Initial (s)	5.0	38.0	38.0	5.0	38.0		12.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	8.0	56.0	56.0	8.0	56.0		54.0	54.0	54.0	54.0	54.0	54.0
Total Split (s)	10.0	56.0	56.0	10.0	56.0		54.0	54.0	54.0	54.0	54.0	54.0
Total Split (%)	8.3%	46.7%	46.7%	8.3%	46.7%		45.0%	45.0%	45.0%	45.0%	45.0%	45.0%
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3		2.3	2.3	2.3	2.3	2.3	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lead/Lag	Lead	Lag	Lag	Lead	Lag		0.9	0.9	0.9	0.9	0.9	0.9
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Recall Mode	None	Max	Max	None	Max		None	None	None	None	None	None
v/c Ratio	0.96	0.78	0.47	0.48	0.40		1.24	0.18	0.25	0.17	0.52	0.76
Control Delay	56.8	26.1	5.1	22.0	18.9		171.7	27.4	5.8	27.8	33.8	27.6
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.8	26.1	5.1	22.0	18.9		171.7	27.4	5.8	27.8	33.8	27.6
Oueue Length 50th (m)	27.7	106.1	5.8	5.7	36.5		~64.2	12.8	0.0	6.3	42.5	44.2
Queue Length 95th (m)	#103.5	#174.7		19.3	60.1		#105.4		10.8	14.1	63.4	75.9
Internal Link Dist (m)		1347.7			595.1			1219.0)		363.7	
Turn Bay Length (m)	240.0		150.0	230.0			210.0		135.0	175.0		220.0
Base Capacity (vph)	364	2474	1026	179	2217		374	839	716	442	871	842
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.96	0.78	0.47	0.48	0.40		0.76	0.11	0.17	0.10	0.32	0.53

Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.5 Natural Cycle: 120 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 108: Dixie Road & Mayfield Road 05/03/2018

Movement Lane Configurations	EBL 1	EBT 3	EBR 1	WBL 1	WBT 3>	wbr 0	NBL 1	NBT 1	NBR 1	SBL 1	SBT 1	SBR 1
Traffic Volume (vph)	348	1942	487	86	889	5	283	93	120	46	278	449
Future Volume (vph)	348	1942	487	86	889	5	283	93	120	46	278	449
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1674	4902	1617	1587	4592		1690	1812	1408	1304	1883	1601
Flt Permitted	0.27	1.00	1.00	0.08	1.00		0.45	1.00	1.00	0.70	1.00	1.00
Satd. Flow (perm)	472	4902	1617	133	4592		808	1812	1408	956	1883	1601
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	348	1942	487	86	889	5	283	93	120	46	278	449
RTOR Reduction (vph)	0	0	212	0	1	0	0	0	86	0	0	135
Lane Group Flow (vph)	348	1942	275	86	893	0	283	93	34	46	278	314
Heavy Vehicles (%)	98	7%	18	15%	14%	33%	88	6%	16%	40%	28	2%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	58.8	51.7	51.7	55.6	50.1		29.0	29.0	29.0	29.0	29.0	29.0
Effective Green, q (s)	58.8	51.7	51.7	55.6	50.1		29.0	29.0	29.0	29.0	29.0	29.0
Actuated g/C Ratio	0.57	0.50	0.50	0.54	0.49		0.28	0.28	0.28	0.28	0.28	0.28
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	352	2460	811	149	2233		227	510	396	269	530	450
v/s Ratio Prot	c0.07	0.40		0.03	0.19			0.05			0.15	
v/s Ratio Perm	c0.50		0.17	0.28			c0.35		0.02	0.05		0.20
v/c Ratio	0.99	0.79	0.34	0.58	0.40		1.25	0.18	0.09	0.17	0.52	0.70
Uniform Delay, dl	17.8	21.2	15.4	16.0	16.9		37.0	28.0	27.2	27.9	31.2	33.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	44.7	2.7	1.1	8.4	0.5		142.3	0.4	0.2	0.6	1.8	5.9
Delay (s)	62.5	23.8	16.5	24.4	17.4		179.3	28.4	27.4	28.6	33.0	39.0
Level of Service	Е	С	В	С	В		F	С	С	С	С	D
Approach Delay (s)		27.4			18.0			114.2			36.2	
Approach LOS		С			В			F			D	
± ±												
Intersection Summary												
HCM 2000 Control Delay			35.5	HCM 20)00 Lev	el of s	Service					D
HCM 2000 Volume to Capacity rati	.0			1.09								
Actuated Cycle Length (s)			103.0	Sum of	lost	time (s	з)					16.8
Intersection Capacity Utilizatio	n			101.88	LCU L	evel of	Servic	e				
Analysis Period (min)			15									
c Critical Lane Group												
_												

G

Queues

109: Dixie Road & Countryside Drive 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	1	1	2	1	1	1	1	1	1>	0
Traffic Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	15
Future Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	15
Lane Group Flow (vph)	17	434	195	70	222	49	55	280	162	246	738	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	custon	n Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		2	1		
Detector Phase	2	2	2	2	2	2	1	1	2	1	1	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	30.0	30.0	12.0	30.0	30.0	
Minimum Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	36.6	36.6	35.2	36.6	36.6	
Total Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	53.6	53.6	35.2	53.6	53.6	
Total Split (%)	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	60.4%	60.4%	39.6%	60.4%	60.4%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.2	4.2	4.0	4.2	4.2	
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2	3.2	2.4	2.4	3.2	2.4	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	7.2	6.6	6.6	
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lag	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Max	Max	None	Max	Max	
v/c Ratio	0.05	0.44	0.35	0.31	0.22	0.10	0.22	0.26	0.31	0.40	0.70	
Control Delay	21.9	26.3	6.5	27.5	23.7	7.3	13.8	11.2	5.6	14.0	18.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.9	26.3	6.5	27.5	23.7	7.3	13.8	11.2	5.6	14.0	18.8	
Queue Length 50th (m)	1.8	27.6	1.5	8.1	13.2	0.0	4.1	21.7	0.0	20.9	79.7	
Queue Length 95th (m)	6.0	39.2	14.6	18.2	21.0	6.8	11.5	36.6	11.9	38.9	125.7	
Internal Link Dist (m)		1345.4	1		805.1			1436.4	1		1219.0)
Turn Bay Length (m)	150.0		140.0	80.0		150.0	190.0			150.0		
Base Capacity (vph)	394	1225	643	283	1225	569	250	1061	615	616	1059	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.35	0.30	0.25	0.18	0.09	0.22	0.26	0.26	0.40	0.70	

Intersection Summary Cycle Length: 88.8 Actuated Cycle Length: 83.8 Natural Cycle: 75 Control Type: Semi Act-Uncoord

HCM Signalized Intersection Capacity Analysis 109: Dixie Road & Countryside Drive 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	1	1	2	1	1	1	1	1	1>	0
Traffic Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	15
Future Volume (vph)	17	434	195	70	222	49	55	280	162	246	723	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	7.2	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1823	3650	1559	1734	3650	1598	1824	1883	1512	1772	1878	
Flt Permitted	0.61	1.00	1.00	0.46	1.00	1.00	0.23	1.00	1.00	0.59	1.00	
Satd. Flow (perm)	1176	3650	1559	845	3650	1598	445	1883	1512	1093	1878	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	17	434	195	70	222	49	55	280	162	246	723	15
RTOR Reduction (vph)	0	0	132	0	0	36	0	0	118	0	1	0
Lane Group Flow (vph)	17	434	63	70	222	13	55	280	44	246	737	0
Confl. Peds. (#/hr)	1	TJT	5	5	222	1	1	200	11	240	131	1
Heavy Vehicles (%)	1 08	0%	3%	5% 5%	08	1 08	고 0응	28	8%	3%	2%	⊥ 0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		m Perm	NA	0 %
Protected Phases	Perm	2	Perm	Perm	2	Perm	Perm	1	Custo	III PETIII	1	
Permitted Phases	2	2	2	2	2	2	1	T	2	1	T	
	22.7	22.7	2 22.7	2 22.7	22.7	22.7	⊥ 47.2	47.2	22.7	1 47.2	47.2	
Actuated Green, G (s)		22.7					47.2	47.2		47.2	47.2	
Effective Green, g (s)	22.7		22.7	22.7	22.7	22.7			22.7			
Actuated g/C Ratio	0.27	0.27	0.27	0.27	0.27	0.27	0.56	0.56	0.27	0.56	0.56	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	7.2	6.6	6.6	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	318	989	422	229	989	433	250	1061	410	616	1059	
v/s Ratio Prot	0 01	c0.12	0 0 4	0 00	0.06	0 01	0 1 0	0.15	0 0 0	0 0 0 0	c0.39	
v/s Ratio Perm	0.01	~	0.04	0.08		0.01	0.12	0.00	0.03	0.23	0 50	
v/c Ratio	0.05	0.44	0.15	0.31	0.22	0.03	0.22	0.26	0.11	0.40	0.70	
Uniform Delay, dl	22.6	25.2	23.2	24.2	23.7	22.4	9.1	9.3	22.9	10.3	13.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.7	0.3	1.6	0.2	0.1	2.0	0.6	0.2	1.9	3.8	
Delay (s)	22.7	25.9	23.5	25.8	23.9	22.5	11.1	10.0	23.1	12.2	16.9	
Level of Service	С	С	С	С	С	С	В	A	С	В	В	
Approach Delay (s)		25.1			24.1			14.4			15.7	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.1		000 Lev	vel of S	Service					В
HCM 2000 Volume to Capacity rati	.0			0.61								
Actuated Cycle Length (s)			83.7			time (s	,					13.8
Intersection Capacity Utilizatio	on			110.7	% ICU L	evel of	Servio	ce				
Analysis Period (min)			15									
c Critical Lane Group												

Н

Queues

110:	Dixie	Road	&	Sandalwood	Parkway	East	05/03/2018
------	-------	------	---	------------	---------	------	------------

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3>	0	1	3>	0	1	2	1	1	2	1
Traffic Volume (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
Future Volume (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
Lane Group Flow (vph)	431	3250	0	254	1734	0	100	355	87	90	835	458
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	3	8		7	4		1 -	6			2	
Permitted Phases	8			4			6		6	2		2
Detector Phase	3	8		7	4		1	6	6	2	2	2
Switch Phase												
Minimum Initial (s)	5.0	39.7		5.0	39.7		5.0	39.0	39.0	39.0	39.0	39.0
Minimum Split (s)	8.0	47.4		8.0	47.4		8.0	46.0	46.0	46.0	46.0	46.0
Total Split (s)	12.0	59.0		20.0	67.0		10.0	61.0	61.0	51.0	51.0	51.0
Total Split (%)	8.6%	42.1%		14.3%	47.9%		7.1%	43.6%	43.6%	36.4%	36.4%	36.4%
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	0.0	3.7		0.0	3.7		0.0	2.4	2.4	2.4	2.4	2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes			Yes	Yes	Yes
Recall Mode	None	Max		None	Max		None	None	None	None	None	None
v/c Ratio	2.52	1.74		0.93	0.80		0.57	0.27	0.14	0.30	0.78	0.80
Control Delay	720.7	364.3		75.8	37.9		39.5	30.4	5.9	40.0	49.6	38.6
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	720.7			75.8	37.9		39.5	30.4	5.9	40.0	49.6	38.6
Queue Length 50th (m)	~169.	7~453.6	5	49.2	139.7		15.7	32.3	0.0	17.4	100.9	70.0
Queue Length 95th (m)	#230.4	1 #473.9)	#97.4	157.7		26.9	43.5	10.1	31.6	123.2	111.3
Internal Link Dist (m)		672.8			108.5			503.2			1436.4	
Turn Bay Length (m)	150.0			130.0			125.0		125.0	120.0		120.0
Base Capacity (vph)	171	1867		273	2156		174	1357	633	308	1117	592
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	2.52	1.74		0.93	0.80		0.57	0.26	0.14	0.29	0.75	0.77

Intersection Summary Cycle Length: 140 Actuated Cycle Length: 138.3 Natural Cycle: 150 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM S	Signal:	ized	Int	cersection	Capacity	Analysis	
110:	Dixie	Road	. &	Sandalwood	l Parkway	East	05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3>	0	1	3>	0	1	2	1	1	2	1
Traffic Volume (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
Future Volume (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	0.95	1.00	1.00	0.95
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.97	1.00	1.00
Frt	1.00	0.98		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1755	5001		1755	5007		1754	3476	1485	1709	3510	1500
Flt Permitted	0.08	1.00		0.07	1.00		0.14	1.00	1.00	0.54	1.00	1.00
Satd. Flow (perm)	144	5001		136	5007		252	3476	1485	970	3510	1500
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	431	2848	402	254	1570	164	100	355	87	90	835	458
RTOR Reduction (vph)	0	13	0	0	9	0	0	0	54	0	0	117
Lane Group Flow (vph)	431	3237	0	254	1725	0	100	355	33	90	835	341
Confl. Peds. (#/hr)	11		32	32		11	33		33	33		33
Heavy Vehicles (%)	48	28	48	48	3%	3%	4%	5%	4%	4%	4%	3%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	3	8		7 -	4		1	6			2	
Permitted Phases	8			4			6		6	2		2
Actuated Green, G (s)	60.3	51.3		71.3	59.3		52.3	52.3	52.3	42.3	42.3	42.3
Effective Green, g (s)	60.3	51.3		71.3	59.3		52.3	52.3	52.3	42.3	42.3	42.3
Actuated g/C Ratio	0.44	0.37		0.52	0.43		0.38	0.38	0.38	0.31	0.31	0.31
Clearance Time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	167	1855		269	2146		171	1314	561	296	1073	458
v/s Ratio Prot	c0.17	0.65		c0.12	0.34		c0.03	0.10			c0.24	
v/s Ratio Perm	c0.95			0.37			0.19		0.02	0.09		0.23
v/c Ratio	2.58	1.74		0.94	0.80		0.58	0.27	0.06	0.30	0.78	0.74
Uniform Delay, dl	34.4	43.5		43.9	34.4		31.5	29.8	27.3	36.7	43.7	43.1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	728.6	337.5		40.7	3.3		7.7	0.2	0.1	1.2	4.2	7.7
Delay (s)	763.0	381.0		84.5	37.7		39.2	30.0	27.4	38.0	48.0	50.8
Level of Service	F	F		F	D		D	С	С	D	D	D
Approach Delay (s)		425.7			43.7			31.3			48.3	
Approach LOS		F			D			С			D	
Intersection Summary												
HCM 2000 Control Delay			228.8		000 Lev	rel of S	Service					F
HCM 2000 Volume to Capacity rati	0			1.69								
Actuated Cycle Length (s)			138.3	Sum of								20.7
Intersection Capacity Utilizatio	n			164.88	LCU L	evel of	Servio	e				
Analysis Period (min)			15									
c Critical Lane Group												

Н

HCM Unsignalized Intersection Capacity Analysis 111: Heart Lake Road & Heart Lake Conservation Area 05/03/2018

Movement Lanes Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade Peak Hour Factor Hourly flow rate (vph)	EBL 1 21 21 Stop 0% 1.00 21	EBT	EBR 0 0 0 1.00	WBL	WBT	WBR	NBL 0 109 109 1.00 109	NBT <1 151 151 Free 0% 1.00 151	NBR	SBL	SBT 0 0 Free 0% 1.00 0	SBR 0 0 0 1.00
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh)	21		0				107					0
Median type Median storage veh) Upstream signal (m)								None			None	
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	369		0				0					
vCu, unblocked vol	369		0				0					
tC, single (s)	6.4		6.3				4.1					
tC, 2 stage (s)												
tF (s)	3.5		3.4				2.2					
p0 queue free %	96		100				93					
cM capacity (veh/h)	593		1070				1630					
Direction, Lane #	EB 1	NB 1										
Volume Total	21	260										
Volume Left	21	109										
Volume Right	0	0										
CSH	593	1630										
Volume to Capacity	0.04	0.07										
Queue Length 95th (m) Control Delay (s)	0.8 11.3	1.5 3.4										
Lane LOS	B B	3.4 A										
Approach Delay (s)	11.3	3.4										
Approach LOS	B	511										
Intersection Summary												
Average Delay			4.0				_	_				
Intersection Capacity Utilizatio	n				24.0%	ICU L	evel of	Servi	ce			
A Amelusia Devied (min)			1 -									
Analysis Period (min)			15									

Queues 101: Kennedy Road North/Kennedy Road & Mayfield Road

07/11/2019

	۶	-	£	-	×,	•	Ť	۴	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	5	† 7≽	5	+ †	7	ኘ	+	7	ሻ	ef.	
Traffic Volume (vph)	267	853	213	1380	524	245	387	293	440	237	
Future Volume (vph)	267	853	213	1380	524	245	387	293	440	237	
Lane Group Flow (vph)	267	936	213	1380	524	245	387	293	440	484	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases		2		2			4		3	4	
Permitted Phases	2		2		2	4		4	4		
Detector Phase	2	2	2	2	2	4	4	4	3	4	
Switch Phase											
Minimum Initial (s)	31.3	31.3	31.3	31.3	31.3	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	37.6	37.6	37.6	37.6	37.6	31.8	31.8	31.8	8.0	31.8	
Total Split (s)	77.0	77.0	77.0	77.0	77.0	33.0	33.0	33.0	25.0	33.0	
Total Split (%)	57.0%	57.0%	57.0%	57.0%	57.0%	24.4%	24.4%	24.4%	18.5%	24.4%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.8	2.8	2.8	0.0	2.8	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3	6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lead/Lag						Lag	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	None	None	None	None	None	
v/c Ratio	2.87	0.52	0.94	0.74	0.48	4.30	1.05	0.73	1.23	1.33	
Control Delay	888.1	22.0	77.9	27.9	2.9	1537.9	112.0	43.0	157.6	205.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	888.1	22.0	77.9	27.9	2.9	1537.9	112.0	43.0	157.6	205.2	
Queue Length 50th (m)	~90.3	75.6	47.4	134.1	0.0	~110.3	~103.2	43.1	~116.4	~147.6	
Queue Length 95th (m)	#141.0	92.1	#96.5	158.7	15.0	#148.2	#160.3	73.4	#176.4	#209.7	
Internal Link Dist (m)		613.9		728.1			1200.6			493.9	
Turn Bay Length (m)	90.0		150.0		130.0			100.0	100.0		
Base Capacity (vph)	93	1814	227	1874	1096	57	369	402	359	364	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	2.87	0.52	0.94	0.74	0.48	4.30	1.05	0.73	1.23	1.33	
Intersection Summary											
Cycle Length: 135											
Actuated Cycle Length: 135	5										
Natural Cycle: 80											
Control Type: Semi Act-Uno											
 Volume exceeds capac 			cally infin	ite.							
Queue shown is maximu		3									
# 95th percentile volumeQueue shown is maximu			leue may	be longe	er.						
Splits and Phases: 101: I	Kennedy R	oad North	/Kenned	y Road &	Mayfield	Road					
\$ 32					-		103		44	14	
77 s						25 s	55		53.5	(1	

HCM Signaliz	zed Intersection Capa	city Analysis	
101: Kenned	y Road North/Kenned	y Road & Ma	yfield Road

07/11/2019

	۶	-	¥	ŕ	-	Ł	*	Ť	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>٦</u>	† γ ₂		5	+ †	- T	5	- †	۳.	5	đ,	
Traffic Volume (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
Future Volume (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1825	3454		1807	3579	1617	1825	1902	1617	1807	1735	
Flt Permitted	0.09	1.00		0.23	1.00	1.00	0.15	1.00	1.00	0.15	1.00	
Satd. Flow (perm)	178	3454		434	3579	1617	293	1902	1617	290	1735	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
RTOR Reduction (vph)	0	5	0	0	0	250	0	0	89	0	27	0
Lane Group Flow (vph)	267	931	0	213	1380	274	245	387	204	440	457	0
Confl. Peds. (#/hr)							7					7
Heavy Vehicles (%)	0%	4%	7%	1%	2%	1%	0%	1%	1%	1%	0%	2%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases		2			2			4		3	4	
Permitted Phases	2			2		2	4		4	4		
Actuated Green, G (s)	70.7	70.7		70.7	70.7	70.7	26.2	26.2	26.2	48.2	26.2	
Effective Green, g (s)	70.7	70.7		70.7	70.7	70.7	26.2	26.2	26.2	48.2	26.2	
Actuated g/C Ratio	0.52	0.52		0.52	0.52	0.52	0.19	0.19	0.19	0.36	0.19	
Clearance Time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	93	1808		227	1874	846	56	369	313	350	336	
v/s Ratio Prot		0.27			0.39			0.20		c0.20	0.26	
v/s Ratio Perm	c1.50			0.49		0.17	c0.84		0.13	0.24		
v/c Ratio	2.87	0.51		0.94	0.74	0.32	4.38	1.05	0.65	1.26	1.36	
Uniform Delay, d1	32.1	21.0		30.1	24.9	18.4	54.4	54.4	50.2	40.4	54.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	870.7	1.1		45.6	2.6	1.0	1559.3	60.2	6.4	137.0	179.7	
Delay (s)	902.8	22.0		75.7	27.6	19.5	1613.7	114.6	56.6	177.4	234.1	
Level of Service	F	С		E	С	В	F	F	E	F	F	
Approach Delay (s)		217.5			30.4			493.3			207.1	
Approach LOS		F			С			F			F	
Intersection Summary												
HCM 2000 Control Delay		188.4	H	CM 2000	Level of	Service		F				
HCM 2000 Volume to Capa	acity ratio		2.88									
Actuated Cycle Length (s)			135.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utilization	ation		128.5%	IC	U Level	of Servic	е		Н			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Queues	
103: Kenned	y Road North & Sandalwood Parkway East

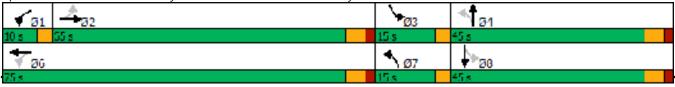
	۶	-	4	-	*	Ť	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	٦ آ	±	5	† Ъ	٦ آ	the f β	٦ آ	÷₽,	
Traffic Volume (vph)	15	1104	91	1653	493	775	605	567	
Future Volume (vph)	15	1104	91	1653	493	775	605	567	
Lane Group Flow (vph)	15	1215	91	1928	493	1003	605	626	
Turn Type	Perm	NA	pm+pt	NA	pm+pt	NA	pm+pt	NA	
Protected Phases		2	1	6	7	4	3	8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	1	6	7	4	3	8	
Switch Phase									
Minimum Initial (s)	8.0	8.0	5.0	8.0	5.0	8.0	5.0	8.0	
Minimum Split (s)	36.0	36.0	8.0	36.0	8.0	40.0	8.0	40.0	
Total Split (s)	65.0	65.0	10.0	75.0	15.0	45.0	15.0	45.0	
Total Split (%)	48.1%	48.1%	7.4%	55.6%	11.1%	33.3%	11.1%	33.3%	
Yellow Time (s)	4.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	2.0	2.0	0.0	2.0	0.0	2.0	0.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	3.0	6.0	3.0	6.0	3.0	6.0	
Lead/Lag	Lag	Lag	Lead		Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	None	
v/c Ratio	0.28	0.78	0.54	1.06	1.59	0.98	2.79	0.62	
Control Delay	40.9	36.6	27.2	72.7	304.4	70.7	835.3	44.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.9	36.6	27.2	72.7	304.4	70.7	835.3	44.2	
Queue Length 50th (m)	2.3	131.3	10.6	~273.1	~134.1	126.2	~240.3	69.3	
Queue Length 95th (m)	9.0	157.0	18.8	#312.0	#196.7	#167.9	#306.5	87.7	
Internal Link Dist (m)		240.5		84.0		354.2		1159.5	
Turn Bay Length (m)	75.0		85.0	101-	100.0	100-	70.0	101-	
Base Capacity (vph)	54	1553	170	1812	311	1020	217	1010	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.78	0.54	1.06	1.59	0.98	2.79	0.62	

Intersection Summary

Cycle Length: 135

Actuated Cycle Length: 135 Natural Cycle: 135

Control Type: Semi Act-Uncoord


Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 103: Kennedy Road North & Sandalwood Parkway East

Forecast 2041 PM

HCM Signaliz	zed Intersection Capacity Analysis	
103: Kennedy	y Road North & Sandalwood Parkwa	ay East

07/11/2019

	۶	-	F	£	←	×,	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	† Ъ		٦ آ	† Ъ		ľ	the t		٦ ۲	t, the factor of the factor	
Traffic Volume (vph)	15	1104	111	91	1653	275	493	775	228	605	567	59
Future Volume (vph)	15	1104	111	91	1653	275	493	775	228	605	567	59
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		3.0	6.0		3.0	6.0		3.0	6.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.99		1.00	0.98		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1738	3542		1789	3527		1825	3464		1772	3478	
Flt Permitted	0.07	1.00		0.09	1.00		0.25	1.00		0.10	1.00	
Satd. Flow (perm)	124	3542		162	3527		480	3464		191	3478	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	15	1104	111	91	1653	275	493	775	228	605	567	59
RTOR Reduction (vph)	0	6	0	0	10	0	0	20	0	0	6	0
Lane Group Flow (vph)	15	1209	0	91	1918	0	493	983	0	605	620	0
Heavy Vehicles (%)	5%	1%	8%	2%	1%	3%	0%	2%	1%	3%	1%	27%
Turn Type	Perm	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		2		1	6		7	4		3	8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	59.0	59.0		69.0	69.0		51.0	39.0		51.0	39.0	
Effective Green, g (s)	59.0	59.0		69.0	69.0		51.0	39.0		51.0	39.0	
Actuated g/C Ratio	0.44	0.44		0.51	0.51		0.38	0.29		0.38	0.29	
Clearance Time (s)	6.0	6.0		3.0	6.0		3.0	6.0		3.0	6.0	
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Grp Cap (vph)	54	1547		167	1802		300	1000		212	1004	
v/s Ratio Prot		0.34		0.03	c0.54		0.15	0.28		c0.25	0.18	
v/s Ratio Perm	0.12			0.25			0.47			c0.82		
v/c Ratio	0.28	0.78		0.54	1.06		1.64	0.98		2.85	0.62	
Uniform Delay, d1	24.3	32.5		24.1	33.0		37.7	47.7		37.3	41.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.8	3.1		6.3	40.8		304.1	24.4		847.1	1.6	
Delay (s)	30.1	35.6		30.3	73.8		341.8	72.1		884.4	43.2	
Level of Service	С	D		С	E		F	E		F	D	
Approach Delay (s)		35.5			71.8			161.0			456.6	
Approach LOS		D			E			F			F	
Intersection Summary												
HCM 2000 Control Delay			165.9	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.87									
Actuated Cycle Length (s)			135.0		um of lost				18.0			
Intersection Capacity Utilization	tion		141.7%	IC	CU Level o	of Service	5		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 104: Heart Lake Road & Mayfield Road

	۶	-	F	ŕ	-	×,	•	Ť	1	ŕ	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	444	7	ካ	444	1	<u>آ</u>	- †	1	5	- †	1
Traffic Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Future Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Lane Group Flow (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Detector Phase	2	2	2	1	6	6	7	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	5.0	12.0	12.0	5.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	33.5	33.5	33.5	9.5	33.5	33.5	9.5	37.5	37.5	37.5	37.5	37.5
Total Split (s)	76.0	76.0	76.0	9.5	85.0	85.0	9.5	50.0	50.0	41.0	41.0	41.0
Total Split (%)	55.9%	55. 9 %	55.9%	7.0%	62.5%	62.5%	7.0%	36.8%	36.8%	30.1%	30.1%	30.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lag	Lead			Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes			Yes	Yes	Yes
Recall Mode	Min	Min	Min	None	Min	Min	None	None	None	None	None	None
v/c Ratio	0.20	0.58	0.18	0.07	0.51	0.04	1.11	0.07	0.05	0.62	0.22	0.25
Control Delay	20.9	19.1	4.0	12.7	15.2	2.6	102.5	18.7	4.2	36.3	26.5	12.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.9	19.1	4.0	12.7	15.2	2.6	102.5	18.7	4.2	36.3	26.5	12.1
Queue Length 50th (m)	2.3	38.6	0.0	1.0	38.2	0.0	~60.4	4.1	0.0	23.3	10.3	3.4
Queue Length 95th (m)	10.9	80.9	9.9	4.7	66.9	3.1	#196.0	14.9	3.9	60.8	29.3	18.1
Internal Link Dist (m)		258.4			1347.6			470.1			409.0	
Turn Bay Length (m)	180.0		280.0	225.0		225.0	210.0		110.0	215.0		130.0
Base Capacity (vph)	316	4182	1357	216	4611	1454	488	1194	949	638	911	809
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.29	0.10	0.07	0.27	0.02	1.11	0.05	0.04	0.34	0.12	0.15

Intersection Summary

Cycle Length: 136

Actuated Cycle Length: 80.2 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ~

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases:	104: Heart Lake Road & Mayfield Road

Forecast 2041 PM

Synchro 9 Report Page 5

HCM Signalized Intersection Capacity Analysis 104: Heart Lake Road & Mayfield Road

	۶	-	¥	£	-	K	*	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	+++	- T	<u>٦</u>	+++	- T	- ከ	- †	- T	<u> </u>	- †	- 7
Traffic Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Future Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1772	4812	1541	1738	5092	1601	1807	1921	1498	1706	1847	1555
Flt Permitted	0.20	1.00	1.00	0.13	1.00	1.00	0.57	1.00	1.00	0.72	1.00	1.00
Satd. Flow (perm)	364	4812	1541	241	5092	1601	1087	1921	1498	1292	1847	1555
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
RTOR Reduction (vph)	0	0	77	0	0	18	0	0	21	0	0	61
Lane Group Flow (vph)	32	1222	58	16	1231	17	544	57	13	220	110	61
Heavy Vehicles (%)	3%	9%	6%	5%	3%	2%	1%	0%	9%	7%	4%	5%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	35.2	35.2	35.2	41.2	41.2	41.2	32.4	32.4	32.4	22.5	22.5	22.5
Effective Green, g (s)	35.2	35.2	35.2	41.2	41.2	41.2	32.4	32.4	32.4	22.5	22.5	22.5
Actuated g/C Ratio	0.43	0.43	0.43	0.50	0.50	0.50	0.39	0.39	0.39	0.27	0.27	0.27
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	155	2050	656	147	2539	798	473	753	587	351	503	423
v/s Ratio Prot		c0.25		0.00	c0.24		c0.08	0.03			0.06	
v/s Ratio Perm	0.09		0.04	0.05		0.01	c0.38		0.01	0.17		0.04
v/c Ratio	0.21	0.60	0.09	0.11	0.48	0.02	1.15	0.08	0.02	0.63	0.22	0.14
Uniform Delay, d1	14.9	18.2	14.1	12.0	13.7	10.5	25.4	15.7	15.4	26.4	23.2	22.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.4	0.7	0.1	0.7	0.3	0.0	89.5	0.1	0.0	4.9	0.5	0.3
Delay (s)	16.3	18.9	14.2	12.7	14.0	10.5	115.0	15.8	15.4	31.3	23.7	23.1
Level of Service	В	В	В	В	В	В	F	В	В	С	С	С
Approach Delay (s)		18.4			13.9			100.7			27.2	
Approach LOS		В			В			F			С	
Intersection Summary												
HCM 2000 Control Delay			31.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.91									
Actuated Cycle Length (s)			82.6		um of los				18.0			
Intersection Capacity Utiliza	tion		72.7%	IC	CU Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

	4	Ł	Ť	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7		7	ኘ	
Traffic Volume (veh/h)	0	635	0	510	261	0
Future Volume (Veh/h)	0	635	0	510	261	0
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	635	0	510	261	0
Pedestrians	Ū		Ũ	0.10	201	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NOTIC			NOTE
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	522	0			510	
vC1, stage 1 conf vol	JZZ	0			510	
vC2, stage 2 conf vol						
vCu, unblocked vol	522	0			510	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			4.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	3.3 42			75	
cM capacity (veh/h)	389	42			1055	
					1055	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	635	510	261			
Volume Left	0	0	261			
Volume Right	635	510	0			
cSH	1091	1700	1055			
Volume to Capacity	0.58	0.30	0.25			
Queue Length 95th (m)	27.4	0.0	6.8			
Control Delay (s)	12.8	0.0	9.5			
Lane LOS	В		А			
Approach Delay (s)	12.8	0.0	9.5			
Approach LOS	В					
Intersection Summary						
Average Delay			7.5			
Intersection Capacity Utiliz	ation		52.7%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

	£	Ł	Ť	1	\mathbf{Y}	Ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	5	7	ŧ				_	
Traffic Volume (veh/h)	300	60	432	0	0	0		
Future Volume (Veh/h)	300	60	432	0	0	0		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	300	60	432	0	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)			243					
pX, platoon unblocked	0.95	0.95			0.95			
vC, conflicting volume	432	432			432			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	376	376			376			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	50	91			100			
cM capacity (veh/h)	594	637			1134			
Direction, Lane #	WB 1	WB 2	NB 1					
Volume Total	300	60	432				_	
Volume Left	300	0	0					
Volume Right	0	60	0					
cSH	594	637	1700					
Volume to Capacity	0.50	0.09	0.25					
Queue Length 95th (m)	19.9	2.2	0.0					
Control Delay (s)	17.1	11.2	0.0					
Lane LOS	С	В						
Approach Delay (s)	16.1	_	0.0					
Approach LOS	С							
Intersection Summary								
Average Delay			7.3					
Intersection Capacity Utiliza	ation		46.0%	IC	U Level o	of Service		
Analysis Period (min)			15					
J								

Queues
107: Heart Lake Road & Sandalwood Parkway East

07/11/2019

	۶	-	ŕ	-	Ł	•	Ť	1	1	Ļ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	<u>آ</u>	ትትኩ	ሻ	- ++	- T	<u>آ</u>	- †	- T	<u>آ</u>	- †	- 7	
Traffic Volume (vph)	148	1570	156	2205	164	80	121	110	138	65	97	
Future Volume (vph)	148	1570	156	2205	164	80	121	110	138	65	97	
Lane Group Flow (vph)	148	1637	156	2205	164	80	121	110	138	65	97	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases	5	2	1	6		7	4		3	8		
Permitted Phases	2		6		6	4		4	8		8	
Detector Phase	5	2	1	6	6	7	4	4	3	8	8	
Switch Phase												
Minimum Initial (s)	5.0	40.0	5.0	40.0	40.0	5.0	8.0	8.0	5.0	8.0	8.0	
Minimum Split (s)	8.0	46.0	8.0	46.0	46.0	8.0	50.0	50.0	8.0	50.0	50.0	
Total Split (s)	10.0	64.0	10.0	64.0	64.0	10.0	51.0	51.0	10.0	51.0	51.0	
Total Split (%)	7.4%	47.4%	7.4%	47.4%	47.4%	7.4%	37.8%	37.8%	7.4%	37.8%	37.8%	
Yellow Time (s)	3.0	4.0	3.0	4.0	4.0	3.0	5.0	5.0	3.0	5.0	5.0	
All-Red Time (s)	0.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.0	3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	Max	Max	None	None	None	None	None	None	
v/c Ratio	0.75	0.58	0.68	1.10	0.18	0.24	0.48	0.36	0.42	0.23	0.30	
Control Delay	42.2	16.6	26.7	78.6	6.8	31.6	48.7	11.3	35.4	42.6	10.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	42.2	16.6	26.7	78.6	6.8	31.6	48.7	11.3	35.4	42.6	10.9	
Queue Length 50th (m)	11.8	69.7	9.2	~248.2	6.9	11.6	21.4	0.0	20.6	11.1	0.0	
Queue Length 95th (m)	#43.0	90.1	#33.4	#305.8	17.3	22.6	37.5	13.6	35.3	22.5	12.8	
Internal Link Dist (m)		149.1		637.0			433.6			218.7		
Turn Bay Length (m)	150.0		190.0					85.0	200.0		150.0	
Base Capacity (vph)	197	2826	231	2001	922	328	807	729	325	791	728	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.75	0.58	0.68	1.10	0.18	0.24	0.15	0.15	0.42	0.08	0.13	

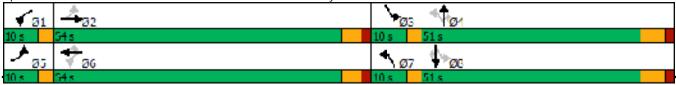
Intersection Summary

Cycle Length: 135

Actuated Cycle Length: 104.8

Natural Cycle: 145

Control Type: Semi Act-Uncoord


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 107: Heart Lake Road & Sandalwood Parkway East

Forecast 2041 PM

HCM Signalized Intersection Capacity Analysis
107: Heart Lake Road & Sandalwood Parkway East

07/11/2019

	۶	-	F	f	-	Ł	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	- †† 1%		ሻ	- † †	۳.	5	- †	۳.	5	- †	7
Traffic Volume (vph)	148	1570	67	156	2205	164	80	121	110	138	65	97
Future Volume (vph)	148	1570	67	156	2205	164	80	121	110	138	65	97
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1807	5098		1825	3614	1601	1690	1921	1585	1807	1883	1601
Flt Permitted	0.07	1.00		0.10	1.00	1.00	0.71	1.00	1.00	0.61	1.00	1.00
Satd. Flow (perm)	131	5098		187	3614	1601	1271	1921	1585	1169	1883	1601
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	148	1570	67	156	2205	164	80	121	110	138	65	97
RTOR Reduction (vph)	0	3	0	0	0	36	0	0	95	0	0	82
Lane Group Flow (vph)	148	1634	0	156	2205	128	80	121	15	138	65	15
Heavy Vehicles (%)	1%	2%	8%	0%	1%	2%	8%	0%	3%	1%	2%	2%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6		6	4		4	8		8
Actuated Green, G (s)	65.0	58.0		65.0	58.0	58.0	19.8	14.3	14.3	22.8	15.8	15.8
Effective Green, g (s)	65.0	58.0		65.0	58.0	58.0	19.8	14.3	14.3	22.8	15.8	15.8
Actuated g/C Ratio	0.62	0.55		0.62	0.55	0.55	0.19	0.14	0.14	0.22	0.15	0.15
Clearance Time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	192	2808		224	1990	881	260	260	215	295	282	240
v/s Ratio Prot	c0.05	0.32		0.05	c0.61		0.02	0.06		c0.03	0.03	
v/s Ratio Perm	0.42			0.38		0.08	0.04		0.01	c0.07		0.01
v/c Ratio	0.77	0.58		0.70	1.11	0.14	0.31	0.47	0.07	0.47	0.23	0.06
Uniform Delay, d1	26.2	15.6		11.9	23.6	11.5	36.4	42.0	39.7	35.0	39.4	38.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	19.8	0.9		11.4	56.6	0.3	1.4	2.7	0.3	2.4	0.9	0.2
Delay (s)	46.0	16.5		23.3	80.2	11.9	37.8	44.7	40.0	37.4	40.3	38.6
Level of Service	D	В		С	F	В	D	D	D	D	D	D
Approach Delay (s)		19.0			72.3			41.3			38.4	
Approach LOS		В			E			D			D	
Intersection Summary												
HCM 2000 Control Delay			48.9	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.93									
Actuated Cycle Length (s)			105.3		um of los				19.0			
Intersection Capacity Utiliza	ition		101.0%	IC	CU Level	of Service	5		G			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 108: Dixie Road & Mayfield Road

07/11/2019	1/2019
------------	--------

	٦	-	¥	ŕ	-	*	Ť	۴	1	Ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	444	۳.	ሻ	ተተቡ	ሻ	- †	7	5	- †	۳.	
Traffic Volume (vph)	309	905	110	96	2049	603	583	194	40	125	558	
Future Volume (vph)	309	905	110	96	2049	603	583	194	40	125	558	
Lane Group Flow (vph)	309	905	110	96	2064	603	583	194	40	125	558	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6		4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	4	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	44.9	44.9	5.0	44.9	12.0	12.0	12.0	12.0	12.0	12.0	
Minimum Split (s)	8.0	51.8	51.8	8.0	51.8	47.9	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	10.0	56.0	56.0	10.0	56.0	54.8	54.8	54.8	54.8	54.8	54.8	
Total Split (%)	8.3%	46.4%	46.4%	8.3%	46.4%	45.4%	45.4%	45.4%	45.4%	45.4%	45.4%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Recall Mode	None	Мах	Max	None	Max	None	None	None	None	None	None	
v/c Ratio	1.80	0.46	0.15	0.31	1.04	1.21	0.77	0.26	0.33	0.17	0.82	
Control Delay	402.4	27.2	4.6	17.5	66.0	144.0	39.6	4.9	34.5	24.4	35.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	402.4	27.2	4.6	17.5	66.0	144.0	39.6	4.9	34.5	24.4	35.5	
Queue Length 50th (m)	~86.5	52.1	0.0	10.2	~178.0	~160.2	108.9	1.3	6.0	17.4	84.3	
Queue Length 95th (m)	#137.8	63.4	9.9	18.5	#205.3	#223.4	149.9	14.4	15.7	29.7	#135.4	
Internal Link Dist (m)		1347.6			595.2		1218.9			363.8		
Turn Bay Length (m)	240.0		150.0	230.0		210.0		125.0	175.0		220.0	
Base Capacity (vph)	172	1955	722	306	1990	500	761	733	123	732	682	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.80	0.46	0.15	0.31	1.04	1.21	0.77	0.26	0.33	0.17	0.82	
Intersection Summary												

Cycle Length: 120.8 Actuated Cycle Length: 120.8 Natural Cycle: 120

Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

Splits and Phases: 108: Dixie Road & Mayfield Road

Forecast 2041 PM

Synchro 9 Report Page 11

HCM Signalized Intersection Capacity Analysis 108: Dixie Road & Mayfield Road

	۶	-	¥	4	-	Ł	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	444	- T	<u>۲</u>	. † †Ъ		<u> </u>	- †	- T	<u>۲</u>	- †	- T
Traffic Volume (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
Future Volume (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1807	4812	1617	1789	4894		1772	1921	1570	1601	1847	1512
Flt Permitted	0.08	1.00	1.00	0.25	1.00		0.68	1.00	1.00	0.18	1.00	1.00
Satd. Flow (perm)	155	4812	1617	462	4894		1262	1921	1570	311	1847	1512
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
RTOR Reduction (vph)	0	0	65	0	1	0	0	0	111	0	0	83
Lane Group Flow (vph)	309	905	45	96	2063	0	603	583	83	40	125	475
Heavy Vehicles (%)	1%	9%	1%	2%	7%	13%	3%	0%	4%	14%	4%	8%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	56.1	49.1	49.1	56.1	49.1		47.9	47.9	47.9	47.9	47.9	47.9
Effective Green, g (s)	56.1	49.1	49.1	56.1	49.1		47.9	47.9	47.9	47.9	47.9	47.9
Actuated g/C Ratio	0.46	0.41	0.41	0.46	0.41		0.40	0.40	0.40	0.40	0.40	0.40
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	167	1955	657	291	1989		500	761	622	123	732	599
v/s Ratio Prot	c0.11	0.19		0.02	0.42			0.30			0.07	
v/s Ratio Perm	c0.75		0.03	0.13			c0.48		0.05	0.13		0.31
v/c Ratio	1.85	0.46	0.07	0.33	1.04		1.21	0.77	0.13	0.33	0.17	0.79
Uniform Delay, d1	30.4	26.2	21.9	18.7	35.8		36.4	31.6	23.2	25.3	23.6	32.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	404.8	0.8	0.2	1.4	30.6		110.4	5.5	0.2	3.2	0.2	8.2
Delay (s)	435.2	27.0	22.1	20.1	66.5		146.8	37.0	23.4	28.5	23.8	40.3
Level of Service	F	С	С	С	E		F	D	С	С	С	D
Approach Delay (s)		121.9			64.4			83.1			36.8	
Approach LOS		F			E			F			D	
Intersection Summary												
HCM 2000 Control Delay			79.1	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.55									
Actuated Cycle Length (s)			120.8	S	um of lost	time (s)			16.8			
Intersection Capacity Utilization	ation		125.1%	IC	CU Level o	of Service	<u>;</u>		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 109: Dixie Road & Countryside Drive

	۶	-	F	£	•	Ł	~	Ť	1	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	- ከ	- 11	- 7	<u>آ</u>	- ++	- 7	<u>٦</u>	- †	- T	<u>آ</u>	Te-	
Traffic Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	
Future Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	
Lane Group Flow (vph)	18	164	49	94	356	109	103	574	133	58	464	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		1	1		
Detector Phase	2	2	2	2	2	2	1	1	1	1	1	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	36.6	36.6	36.6	36.6	36.6	
Minimum Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	43.2	43.2	43.2	43.2	43.2	
Total Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	53.6	53.6	53.6	53.6	53.6	
Total Split (%)	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	60.4%	60.4%	60.4%	60.4%	60.4%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.2	4.2	4.2	4.2	4.2	
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2	3.2	2.4	2.4	2.4	2.4	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	
v/c Ratio	0.08	0.20	0.13	0.35	0.43	0.24	0.20	0.52	0.14	0.14	0.42	
Control Delay	23.5	24.5	7.9	28.8	27.4	6.4	10.0	12.5	2.3	9.7	10.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.5	24.5	7.9	28.8	27.4	6.4	10.0	12.5	2.3	9.7	10.9	
Queue Length 50th (m)	2.0	9.6	0.0	10.9	22.1	0.0	5.7	40.7	0.0	3.1	29.6	
Queue Length 95th (m)	6.4	16.2	6.9	22.1	32.4	10.0	16.6	84.6	7.0	10.3	63.1	
Internal Link Dist (m)		1345.4			805.1			1436.4			1218.9	
Turn Bay Length (m)	150.0		140.0	120.0		150.0	190.0			150.0		
Base Capacity (vph)	367	1297	553	417	1285	637	515	1112	939	424	1103	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.13	0.09	0.23	0.28	0.17	0.20	0.52	0.14	0.14	0.42	
Intersection Summary												
Cycle Length: 88.8												
Actuated Cycle Length: 79.1												
Natural Cycle: 80												
Control Type: Semi Act-Unco	ord											
Splits and Phases: 109: Di	ixie Road	& Countr	yside Driv	/e								

HCM Signalized Intersection Capacity Analysis 109: Dixie Road & Countryside Drive

	<u>ر المالي الم</u>	-	ì	4	-	Ł	*	Ť	~	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	- ++	7	ሻ	+ †	7	5	ŧ	7	5	÷.	
Traffic Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	43
Future Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1822	3650	1475	1728	3614	1596	1825	1865	1484	1825	1844	
Flt Permitted	0.54	1.00	1.00	0.65	1.00	1.00	0.45	1.00	1.00	0.37	1.00	
Satd. Flow (perm)	1033	3650	1475	1179	3614	1596	864	1865	1484	710	1844	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	18	164	49	94	356	109	103	574	133	58	421	43
RTOR Reduction (vph)	0	0	38	0	0	84	0	0	54	0	4	0
Lane Group Flow (vph)	18	164	11	94	356	25	103	574	79	58	460	0
Confl. Peds. (#/hr)	2		37	37		2						
Heavy Vehicles (%)	0%	0%	6%	3%	1%	0%	0%	3%	10%	0%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		1	1		
Actuated Green, G (s)	18.0	18.0	18.0	18.0	18.0	18.0	47.2	47.2	47.2	47.2	47.2	
Effective Green, g (s)	18.0	18.0	18.0	18.0	18.0	18.0	47.2	47.2	47.2	47.2	47.2	
Actuated g/C Ratio	0.23	0.23	0.23	0.23	0.23	0.23	0.60	0.60	0.60	0.60	0.60	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	235	831	336	268	823	363	516	1114	886	424	1101	
v/s Ratio Prot		0.04			c0.10			c0.31			0.25	
v/s Ratio Perm	0.02		0.01	0.08		0.02	0.12		0.05	0.08		
v/c Ratio	0.08	0.20	0.03	0.35	0.43	0.07	0.20	0.52	0.09	0.14	0.42	
Uniform Delay, d1	24.0	24.7	23.7	25.6	26.1	23.9	7.3	9.2	6.8	7.0	8.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.3	0.2	0.1	1.7	0.8	0.2	0.9	1.7	0.2	0.7	1.2	
Delay (s)	24.3	24.9	23.8	27.3	26.9	24.1	8.1	11.0	7.0	7.6	9.7	
Level of Service	С	С	С	С	С	С	А	В	А	А	А	
Approach Delay (s)		24.6			26.4			9.9			9.5	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			15.8	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)			79.0		um of los				13.8			
Intersection Capacity Utiliza	ation		113.4%	IC	CU Level	of Service			Н			
Analysis Period (min)			15									
a Critical Lana Croup												

c Critical Lane Group

Queues 110: Dixie Road & Sandalwood Parkway East

07/11/2019

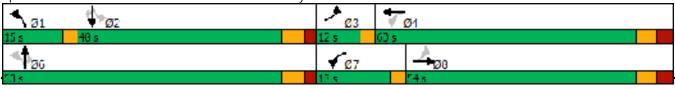
	٦	-	f	+	-	Ť	1	1	Ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	5	ተተቡ	5	ŧŧ₽	<u>آ</u>	- 11	1	<u>آ</u>	- ††	1	
Traffic Volume (vph)	338	1256	170	2854	353	855	299	80	584	664	
Future Volume (vph)	338	1256	170	2854	353	855	299	80	584	664	
Lane Group Flow (vph)	338	1370	170	2961	353	855	299	80	584	664	
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm	Perm	NA	Perm	
Protected Phases	3	8	7	4	1	6			2		
Permitted Phases	8		4		6		6	2		2	
Detector Phase	3	8	7	4	1	6	6	2	2	2	
Switch Phase											
Minimum Initial (s)	5.0	39.7	5.0	39.7	5.0	39.0	39.0	39.0	39.0	39.0	
Minimum Split (s)	8.0	47.4	8.0	47.4	8.0	46.0	46.0	46.0	46.0	46.0	
Total Split (s)	12.0	54.0	18.0	60.0	15.0	63.0	63.0	48.0	48.0	48.0	
Total Split (%)	8.9%	40.0%	13.3%	44.4%	11.1%	46.7%	46.7%	35.6%	35.6%	35.6%	
Yellow Time (s)	3.0	4.0	3.0	4.0	3.0	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	3.7	0.0	3.7	0.0	2.4	2.4	2.4	2.4	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.7	3.0	7.7	3.0	7.0	7.0	7.0	7.0	7.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead			Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes	Yes	Yes	
Recall Mode	None	Max	None	Мах	None	None	None	None	None	None	
v/c Ratio	1.86	0.76	0.70	1.48	1.01	0.58	0.38	0.47	0.54	1.14	
Control Delay	429.7	42.0	42.2	250.0	82.2	32.3	8.2	49.1	41.5	116.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	429.7	42.0	42.2	250.0	82.2	32.3	8.2	49.1	41.5	116.9	
Queue Length 50th (m)	~111.4	109.4	24.2	~368.1	~60.0	83.8	10.4	16.0	62.9	~162.5	
Queue Length 95th (m)	#166.9	126.4	46.9	#390.9	#120.0	102.6	29.4	31.9	79.9	#230.3	
Internal Link Dist (m)		672.7		108.6		503.1			1436.4		
Turn Bay Length (m)	150.0		130.0		125.0		125.0	120.0		120.0	
Base Capacity (vph)	182	1793	260	2003	349	1484	779	170	1076	580	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.86	0.76	0.65	1.48	1.01	0.58	0.38	0.47	0.54	1.14	
Intersection Summary											
Cuala Langth, 12E											

Cycle Length: 135

Actuated Cycle Length: 135

Natural Cycle: 150

Control Type: Semi Act-Uncoord


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 110: Dixie Road & Sandalwood Parkway East

Forecast 2041 PM

	٦	+	F	f	•	×.	٢	Ť	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	** ₽		5	<u>†</u> †₽,		5	+ †	1	5	+ †	1
Traffic Volume (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
Future Volume (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1807	5059		1807	5161		1803	3579	1557	1807	3544	1555
Flt Permitted	0.08	1.00		0.08	1.00		0.28	1.00	1.00	0.30	1.00	1.00
Satd. Flow (perm)	160	5059		150	5161		534	3579	1557	563	3544	1555
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
RTOR Reduction (vph)	0	8	0	0	3	0	0	0	134	0	0	109
Lane Group Flow (vph)	338	1362	0	170	2958	0	353	855	165	80	584	555
Confl. Peds. (#/hr)	14		25	25		14	21		28	28		21
Heavy Vehicles (%)	1%	2%	2%	1%	1%	0%	1%	2%	0%	0%	3%	1%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	3	8		7	4		1	6			2	
Permitted Phases	8			4			6		6	2		2
Actuated Green, G (s)	56.6	47.6		64.3	52.3		56.0	56.0	56.0	41.0	41.0	41.0
Effective Green, g (s)	56.6	47.6		64.3	52.3		56.0	56.0	56.0	41.0	41.0	41.0
Actuated g/C Ratio	0.42	0.35		0.48	0.39		0.41	0.41	0.41	0.30	0.30	0.30
Clearance Time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	176	1783		239	1999		334	1484	645	170	1076	472
v/s Ratio Prot	c0.13	0.27		0.07	c0.57		c0.09	0.24			0.16	
v/s Ratio Perm	c0.67			0.27			0.34		0.11	0.14		c0.36
v/c Ratio	1.92	0.76		0.71	1.48		1.06	0.58	0.26	0.47	0.54	1.18
Uniform Delay, d1	35.8	38.7		29.7	41.4		36.1	30.4	25.9	38.2	39.2	47.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	434.5	3.2		11.7	218.6		65.0	0.9	0.4	4.3	1.0	99.7
Delay (s)	470.3	41.9		41.5	260.0		101.1	31.2	26.3	42.4	40.2	146.7
Level of Service	F	D		D	F		F	С	С	D	D	F
Approach Delay (s)		126.7			248.1			46.6			93.6	
Approach LOS		F			F			D			F	
Intersection Summary												
HCM 2000 Control Delay			154.8	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.51									
Actuated Cycle Length (s)			135.0		um of lost				20.7			
Intersection Capacity Utiliza	ation		162.7%	IC	CU Level o	of Service	Ģ		Н			
Analysis Period (min)			15									

c Critical Lane Group

	٦	ì	*	Ť	Ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5			Ł		
Traffic Volume (veh/h)	128	0	110	382	0	0
Future Volume (Veh/h)	128	0	110	382	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	128	0	110	382	0	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONC	None	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	602	0	0			
vC1, stage 1 conf vol	002	0	0			
vC2, stage 2 conf vol						
vCu, unblocked vol	602	0	0			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	71	100	93			
cM capacity (veh/h)	435	1091	1636			
			1030			
Direction, Lane #	EB 1	NB 1				
Volume Total	128	492				
Volume Left	128	110				
Volume Right	0	0				
cSH	435	1636				
Volume to Capacity	0.29	0.07				
Queue Length 95th (m)	8.5	1.5				
Control Delay (s)	16.7	2.1				
Lane LOS	С	А				
Approach Delay (s)	16.7	2.1				
Approach LOS	С					
Intersection Summary						
Average Delay			5.1			
Intersection Capacity Utiliza	ation		39.9%	IC	CU Level c	f Service
Analysis Period (min)			15	IC.		
			10			

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2>	0	1	2	1	1	1	1	1	1>	0
Traffic Volume (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
Future Volume (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
Lane Group Flow (vph)	267	936	0	213	1380	524	245	387	293	440	484	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases		2			2			4		3	4	
Permitted Phases	2			2		2	4		4	4		
Detector Phase	2	2		2	2	2	4	4	4	3	4	
Switch Phase												
Minimum Initial (s)	31.3	31.3		31.3	31.3	31.3	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	37.6	37.6		37.6	37.6	37.6	31.8	31.8	31.8	8.0	31.8	
Total Split (s)	77.0	77.0		77.0	77.0	77.0	33.0	33.0	33.0	25.0	33.0	
Total Split (%)	57.0%	57.0%		57.0%	57.0%	57.0%	24.4%	24.4%	24.4%	18.5%	24.4%	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.3	2.3		2.3	2.3	2.3	2.8	2.8	2.8	0.0	2.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lead/Lag							Lag	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max		Max	Max	Max	None	None	None	None	None	
v/c Ratio	2.87	0.52		0.94	0.74	0.48	4.38	1.05	0.73	1.23	1.33	
Control Delay	888.1	22.0		77.9	27.9	2.9	1572.7	112.0	43.0	157.6	205.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	888.1	22.0		77.9	27.9	2.9	1572.7	112.0	43.0	157.6	205.2	
Queue Length 50th (m)	~90.3	75.6		47.4	134.1	0.0	~110.5	~103.2	43.1	~116.4	~147.6	5
Queue Length 95th (m)	#141.0	92.1		#96.5	158.7	15.0	#148.5	#160.3	73.4	#176.4	#209.7	7
Internal Link Dist (m)		613.9			728.1			1200.6			493.9	
Turn Bay Length (m)	90.0			150.0		130.0			100.0	100.0		
Base Capacity (vph)	93	1814		227	1874	1096	56	369	402	359	364	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	2.87	0.52		0.94	0.74	0.48	4.38	1.05	0.73	1.23	1.33	

Intersection Summary Cycle Length: 135 Actuated Cycle Length: 135 Natural Cycle: 80 Control Type: Semi Act-Uncoord

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Forecast 2041 PM Synchro 9 Report

Page 0

HCM Signalized Intersection Capacity Analysis 101: Kennedy Road North/Kennedy Road & Mayfield Road 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2>	0	1	2	1	1	1	1	1 440	1>	0
Traffic Volume (vph)	267	853	83	213	1380	524	245	387	293		237	247
Future Volume (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1825	3454		1807	3579	1617	1825	1902	1617	1807	1735	
Flt Permitted	0.09	1.00		0.23	1.00	1.00	0.15	1.00	1.00	0.15	1.00	
Satd. Flow (perm)	178	3454		434	3579	1617	293	1902	1617	290	1735	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	267	853	83	213	1380	524	245	387	293	440	237	247
RTOR Reduction (vph)	0	5	0	0	0	250	0	0	89	0	27	0
Lane Group Flow (vph)	267	931	0	213	1380	274	245	387	204	440	457	0
Confl. Peds. (#/hr)							7					7
Heavy Vehicles (%)	0 %	4%	7%	1%	2%	1%	0%	1%	1%	1%	0%	28
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases		2			2			4		3	4	
Permitted Phases	2			2		2	4		4	4		
Actuated Green, G (s)	70.7	70.7		70.7	70.7	70.7	26.2	26.2	26.2	48.2	26.2	
Effective Green, q (s)	70.7	70.7		70.7	70.7	70.7	26.2	26.2	26.2	48.2	26.2	
Actuated g/C Ratio	0.52	0.52		0.52	0.52	0.52	0.19	0.19	0.19	0.36	0.19	
Clearance Time (s)	6.3	6.3		6.3	6.3	6.3	6.8	6.8	6.8	3.0	6.8	
Vehicle Extension (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	93	1808		227	1874	846	56	369	313	350	336	
v/s Ratio Prot	23	0.27		227	0.39	010	50	0.20	515	c0.20		
v/s Ratio Perm	c1.50	0.27		0.49	0.55	0.17	c0.84	0.20	0.13	0.24	0.20	
v/c Ratio	2.87	0.51		0.94	0.74	0.32	4.38	1.05	0.65	1.24	1.36	
Uniform Delay, dl	32.1	21.0		30.1	24.9	18.4	54.4	54.4	50.2	40.4	54.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	870.7			45.6	2.6	1.00	1559.3		6.4		179.7	
Delay (s)	902.8	22.0		45.0 75.7	2.0	19.5		114.6	56.6	177.4		
Level of Service	902.0 F	22.0 C		75.7 E	27.0 C	19.5 B	тотэ./ F	114.0 F	50.0 E	I//.4 F	234.1 F	
	Г			Е.	30.4	в	F	£ 493.3	E.	г	£ 207.1	
Approach Delay (s)		217.5 F										
Approach LOS		F.			С			F			F	
Intersection Summary			100 4	TION OF	000 T		1					
HCM 2000 Control Delay	~		108.4	HCM 20 2.88	JUU LEV	er or ?	Service					F
HCM 2000 Volume to Capacity rati Actuated Cycle Length (s)	.0		125 0		f lost	timo (-)					16.1
	n		133.0				Servic	~				T0.T
Intersection Capacity Utilizatio Analysis Period (min)	11		15	T70.2.	ο ICU Li	ever OL	PELATC	C				
-			τэ									
c Critical Lane Group												

Н

Queues

103: Kennedy Road North & Sandalwood Parkway East 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2>	0	1	2>	0	1	2>	0	1	2>	0
Traffic Volume (vph)	15	1104	111	91	1653	275	493	775	228	605	567	59
Future Volume (vph)	15	1104	111	91	1653	275	493	775	228	605	567	59
Lane Group Flow (vph)	15	1215	0	91	1928	0	493	1003	0	605	626	0
Turn Type	Perm	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		2		1	6		7	4		3	8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		1	6		7	4		3	8	
Switch Phase												
Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	8.0		5.0	8.0	
Minimum Split (s)	36.0	36.0		8.0	36.0		8.0	40.0		8.0	40.0	
Total Split (s)	65.0	65.0		10.0	75.0		15.0	45.0		15.0	45.0	
Total Split (%)	48.1%	48.1%		7.4%	55.6%		11.1%	33.3%		11.1%	33.3%	
Yellow Time (s)	4.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	2.0	2.0		0.0	2.0		0.0	2.0		0.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		3.0	6.0		3.0	6.0		3.0	6.0	
Lead/Lag	Lag	Lag		Lead			Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes			Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None		None	None		None	None	
v/c Ratio	0.28	0.78		0.54	1.06		1.59	0.98		2.79	0.62	
Control Delay	40.9	36.6		27.2	72.7		304.4	70.7		835.3	44.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	40.9	36.6		27.2	72.7		304.4	70.7		835.3	44.2	
Queue Length 50th (m)	2.3	131.3		10.6	~273.1	L	~134.1	126.2		~240.3	69.3	
Queue Length 95th (m)	9.0	157.0		18.8	#312.0)	#196.7	#167.9)	#306.5	87.7	
Internal Link Dist (m)		240.5			84.0			354.2			1159.5	5
Turn Bay Length (m)	75.0			85.0			100.0			70.0		
Base Capacity (vph)	54	1553		170	1812		311	1020		217	1010	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.78		0.54	1.06		1.59	0.98		2.79	0.62	

Intersection Summary Cycle Length: 135 Actuated Cycle Length: 135 Natural Cycle: 135 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 103: Kennedy Road North & Sandalwood Parkway East 05/03/2018

Movement Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd Flow (perm)	EBL 1 15 1900 6.0 1.00 0.95 1738 0.07 124	EBT 2> 1104 1900 6.0 0.95 0.99 1.00 3542 1.00 3542	EBR 0 111 111 1900	WBL 1 91 1900 3.0 1.00 1.00 0.95 1789 0.09 162	WBT 2> 1653 1653 1900 6.0 0.95 0.98 1.00 3527 1.00 3527	WBR 0 275 275 1900	NBL 1 493 1900 3.0 1.00 1.00 0.95 1825 0.25 480	NBT 2> 775 1900 6.0 0.95 0.97 1.00 3464 1.00 3464	NBR 0 228 228 1900	SBL 1 605 605 1900 3.0 1.00 1.00 0.95 1772 0.10 191	SBT 2> 567 1900 6.0 0.95 0.99 1.00 3478 1.00 3478	SBR 0 59 59 1900
Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s)	0.07 124 1.00 15 5% Perm 2 59.0 59.0 0.44 6.0 5.0 54 0.12 0.28 24.3 1.00 5.8 30.1 C	3542 1.00 1104 6 1209 1% NA 2 59.0 59.0 59.0 0.44 6.0 5.0 1547 0.34 0.78 32.5 1.00 3.1 35.6 D 35.5	1.00 111 0 8%	0.09 162 1.00 91 2% pm+pt 1 6 69.0 69.0 0.51 3.0 5.0 167 0.03 0.25 0.54 24.1 1.00 6.3 30.3 C	3527 1.00 1653 10 1918 1% NA 6 69.0 69.0 0.51 6.0 5.0 1802 c0.54 1.06 33.0 1.00 40.8 73.8 E 71.8	1.00 275 0 3%	0.25 480 1.00 493 0 493 0% pm+pt 7 4 51.0 51.0 0.38 3.0 5.0 300 0.15 0.47 1.64 37.7 1.00 304.1 341.8 F	3464 1.00 775 20 983 2% NA 4 39.0 39.0 0.29 6.0 5.0 1000 0.28 0.98 47.7 1.00 24.4 72.1 E 161.0	1.00 228 0 1%	0.10 191 1.00 605 0 605 3% pm+pt 3 8 51.0 0.38 3.0 5.0 212 c0.25 c0.82 2.85 37.3 1.00 847.1 884.4 F	3478 1.00 567 6 620 1% NA 8 39.0 39.0 0.29 6.0 5.0 1004 0.18 0.62 41.5 1.00 1.6 43.2 D 456.6	1.00 59 0 27%
Approach LOS Intersection Summary		D			Ε			F			F	
HCM 2000 Control Delay HCM 2000 Volume to Capacity rati	0		165.9	HCM 20 1.87	000 Lev	el of S	Service					F
Actuated Cycle Length (s) Intersection Capacity Utilizatio Analysis Period (min) c Critical Lane Group			135.0 15	Sum of	E lost : % ICU Le		s) Servic	e				18.0

Н

Queues

104: Heart Lake Road & Mayfield Road 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3	1	1	3	1	1	1	1	1	1	1
Traffic Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Future Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Lane Group Flow (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Detector Phase	2	2	2	1	6	б	7	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	5.0	12.0	12.0	5.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	33.5	33.5	33.5	9.5	33.5	33.5	9.5	37.5	37.5	37.5	37.5	37.5
Total Split (s)	76.0	76.0	76.0	9.5	85.0	85.0	9.5	50.0	50.0	41.0	41.0	41.0
Total Split (%)	55.9%	55.9%	55.9%	7.0%	62.5%	62.5%	7.0%	36.8%	36.8%	30.1%	30.1%	30.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lag	Lead			Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes			Yes	Yes	Yes
Recall Mode	Min	Min	Min	None	Min	Min	None	None	None	None	None	None
v/c Ratio	0.20	0.58	0.18	0.07	0.51	0.04	1.11	0.07	0.05	0.62	0.22	0.25
Control Delay	20.9	19.1	4.0	12.7	15.2	2.6	102.5	18.7	4.2	36.3	26.5	12.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.9	19.1	4.0	12.7	15.2	2.6	102.5	18.7	4.2	36.3	26.5	12.1
Queue Length 50th (m)	2.3	38.6	0.0	1.0	38.2	0.0	~60.4	4.1	0.0	23.3	10.3	3.4
Queue Length 95th (m)	10.9	80.9	9.9	4.7	66.9	3.1	#196.0		3.9	60.8	29.3	18.1
Internal Link Dist (m)		258.4			1347.6	5		470.1			409.0	
Turn Bay Length (m)	180.0		280.0	225.0		225.0	210.0		110.0	215.0		130.0
Base Capacity (vph)	316	4182	1357	216	4611	1454	488	1194	949	638	911	809
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.29	0.10	0.07	0.27	0.02	1.11	0.05	0.04	0.34	0.12	0.15

Intersection Summary Cycle Length: 136 Actuated Cycle Length: 80.2 Natural Cycle: 90 Control Type: Actuated-Uncoordinated

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 104: Heart Lake Road & Mayfield Road 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3	1	1	3	1	1	1	1	1	1	1
Traffic Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Future Volume (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1772	4812	1541	1738	5092	1601	1807	1921	1498	1706	1847	1555
Flt Permitted	0.20	1.00	1.00	0.13	1.00	1.00	0.57	1.00	1.00	0.72	1.00	1.00
Satd. Flow (perm)	364	4812	1541	241	5092	1601	1087	1921	1498	1292	1847	1555
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	32	1222	135	16	1231	35	544	57	34	220	110	122
RTOR Reduction (vph)	0	0	77	0	0	18	0	0	21	0	0	61
Lane Group Flow (vph)	32	1222	58	16	1231	17	544	57	13	220	110	61
Heavy Vehicles (%)	3%	9%	6%	5%	3%	28	18	0%	98	7%	4%	5%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	35.2	35.2	35.2	41.2	41.2	41.2	32.4	32.4	32.4	22.5	22.5	22.5
Effective Green, g (s)	35.2	35.2	35.2	41.2	41.2	41.2	32.4	32.4	32.4	22.5	22.5	22.5
Actuated g/C Ratio	0.43	0.43	0.43	0.50	0.50	0.50	0.39	0.39	0.39	0.27	0.27	0.27
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	155	2050	656	147	2539	798	473	753	587	351	503	423
v/s Ratio Prot		c0.25		0.00	c0.24		c0.08	0.03			0.06	
v/s Ratio Perm	0.09		0.04	0.05		0.01	c0.38		0.01	0.17		0.04
v/c Ratio	0.21	0.60	0.09	0.11	0.48	0.02	1.15	0.08	0.02	0.63	0.22	0.14
Uniform Delay, dl	14.9	18.2	14.1	12.0	13.7	10.5	25.4	15.7	15.4	26.4	23.2	22.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.4	0.7	0.1	0.7	0.3	0.0	89.5	0.1	0.0	4.9	0.5	0.3
Delay (s)	16.3	18.9	14.2	12.7	14.0	10.5	115.0	15.8	15.4	31.3	23.7	23.1
Level of Service	В	В	В	В	В	В	F	В	В	С	С	С
Approach Delay (s)		18.4			13.9			100.7			27.2	
Approach LOS		В			В			F			С	
Intersection Summary			21 0			1 6 6						a
HCM 2000 Control Delay			31.8		000 Lev	el or s	Service					С
HCM 2000 Volume to Capacity rati	.0		00 0	0.91		,	,					10.0
Actuated Cycle Length (s)			82.6		E lost							18.0
Intersection Capacity Utilizatio	11		1 Г	12.18	του με	ever or	Servio	e				
Analysis Period (min)			15									
c Critical Lane Group												

С

HCM 1	Jnsigna	alized	l Inte	ers	section	Capac	city	Analysis	3
105:	Heart	Lake	Road	&	Country	zside	Driv	<i>i</i> e	05/03/2018

Movement Lanes Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	EBL	EBT	EBR	WBL 0 0 Stop 0%	WBT	WBR 1 635 635	NBL	NBT 0 0 Free 0%	NBR 1 510 510	SBL 1 261 261	SBT 0 0 Free 0%	SBR
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage				1.00 0		1.00 635		1.00	1.00 510	1.00 261	1.00	
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked								None			None	
vC, conflicting volume vCl, stage 1 conf vol				522		0				510		
vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s)				522 6.4		0 6.2				510 4.1		
tF (s) p0 queue free % cM capacity (veh/h)				3.5 100 389		3.3 42 1091				2.2 75 1055		
Direction, Lane # Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS	WB 1 635 0 635 1091 0.58 27.4 12.8 B 12.8 B	NB 1 510 0 510 1700 0.30 0.0 0.0 0.0	SB 1 261 0 1055 0.25 6.8 9.5 A 9.5									
Intersection Summary Average Delay Intersection Capacity Utilizatio	on		7.5		52.7%	ICU L	evel of	Servio	ce			
A Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 106: Heart Lake Road & 410 SB Exit 05/03/2018

Movement Lanes Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade Peak Hour Factor	EBL	EBT	EBR	WBL 1 300 300 Stop 0% 1.00	WBT	WBR 1 60 60 1.00	NBL	NBT 1 432 432 Free 0% 1.00	NBR 0 0 0	SBL 0 0 1.00	SBT 0 0 Free 0% 1.00	SBR
Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh)				300		60		432	0	0	0	
Median type Median storage veh)								None			None	
Upstream signal (m) pX, platoon unblocked				0.95		0.95		243		0.95		
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol				432		432				432		
vCu, unblocked vol tC, single (s)				376 6.4		376 6.2				376 4.1		
tC, 2 stage (s) tF (s)				3.5		3.3				2.2		
p0 queue free % cM capacity (veh/h)				50 594		91 637				100 1134		
Direction, Lane # Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (m) Control Delay (s) Lane LOS	WB 1 300 0 594 0.50 19.9 17.1 C	WB 2 60 60 637 0.09 2.2 11.2 B	NB 1 432 0 1700 0.25 0.0 0.0									
Approach Delay (s) Approach LOS	16.1 C	D	0.0									
Intersection Summary Average Delay Intersection Capacity Utilizatic A	on		7.3		46.0%	ICU L	evel of	Servi	ce			
A Analysis Period (min)			15									

Queues 107: Heart Lake Road & Sandalwood Parkway East 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3>	0	1	2	1	1	1	1	1	1	1
Traffic Volume (vph)	148	1570	67	156	2205	164	80	121	110	138	65	97
Future Volume (vph)	148	1570	67	156	2205	164	80	121	110	138	65	97
Lane Group Flow (vph)	148	1637	0	156	2205	164	80	121	110	138	65	97
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	б		7	4		3	8	
Permitted Phases	2			6		6	4		4	8		8
Detector Phase	5	2		1	б	6	7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	40.0		5.0	40.0	40.0	5.0	8.0	8.0	5.0	8.0	8.0
Minimum Split (s)	8.0	46.0		8.0	46.0	46.0	8.0	50.0	50.0	8.0	50.0	50.0
Total Split (s)	10.0	64.0		10.0	64.0	64.0	10.0	51.0	51.0	10.0	51.0	51.0
Total Split (%)	7.4%	47.4%		7.4%	47.4%	47.4%	7.4%	37.8%	37.8%	7.4%	37.8%	37.8%
Yellow Time (s)	3.0	4.0		3.0	4.0	4.0	3.0	5.0	5.0	3.0	5.0	5.0
All-Red Time (s)	0.0	2.0		0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Max		None	Max	Max	None	None	None	None	None	None
v/c Ratio	0.75	0.58		0.68	1.10	0.18	0.24	0.48	0.36	0.42	0.23	0.30
Control Delay	42.2	16.6		26.7	78.6	6.8	31.6	48.7	11.3	35.4	42.6	10.9
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.2	16.6		26.7	78.6	6.8	31.6	48.7	11.3	35.4	42.6	10.9
Queue Length 50th (m)	11.8	69.7		9.2	~248.2	6.9	11.6	21.4	0.0	20.6	11.1	0.0
Queue Length 95th (m)	#43.0	90.1		#33.4	#305.8	17.3	22.6	37.5	13.6	35.3	22.5	12.8
Internal Link Dist (m)		149.1			637.0			433.6			218.7	
Turn Bay Length (m)	150.0			190.0					85.0	200.0		150.0
Base Capacity (vph)	197	2826		231	2001	922	328	807	729	325	791	728
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.58		0.68	1.10	0.18	0.24	0.15	0.15	0.42	0.08	0.13

Intersection Summary Cycle Length: 135 Actuated Cycle Length: 104.8 Natural Cycle: 145 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 107: Heart Lake Road & Sandalwood Parkway East 05/03/2018

Movement Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases	5	EBT 3> 1570 1900 6.0 0.91 0.99 1.00 5098 1.00 5098 1.00 1570 3 1634 2% NA 2	EBR 0 67 67 1900 1.00 67 0 8%	WBL 156 156 1900 3.0 1.00 1.00 0.95 1825 0.10 187 1.00 156 0 % pm+pt 1	WBT 2205 2205 1900 6.0 0.95 1.00 1.00 3614 1.00 3614 1.00 2205 0 2205 1% NA 6	WBR 1 164 1900 6.0 1.00 0.85 1.00 1601 1.00 1601 1.00 164 36 128 2% Perm	NBL 1 80 80 1900 3.0 1.00 0.95 1690 0.71 1271 1.00 80 80 8% pm+pt 7	NBT 1 121 1900 7.0 1.00 1.00 1921 1.00 1921 1.00 121 0 % NA 4	NBR 1 110 1900 7.0 1.00 0.85 1.00 1585 1.00 1585 1.00 110 95 15 3% Perm	SBL 1 138 1900 3.0 1.00 1.00 0.95 1807 0.61 1169 1.00 138 0 138 1% pm+pt 3	SBT 1 65 65 1900 7.0 1.00 1.00 1.00 1.883 1.00 65 0 65 2% NA 8	SBR 1 97 97 1900 7.0 1.00 0.85 1.00 1601 1.00 97 82 15 2% Perm
Adj. Flow (vph)	148	1570	67	156	2205	164	80	121	110	138	65	97
Heavy Vehicles (%)	18	2%		0%	1%	2%	8%	0%	3%	1%	2%	2%
Permitted Phases	2			6		6	4		4	8		8
Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio	65.0 65.0 0.62	58.0 58.0 0.55		65.0 65.0 0.62	58.0 58.0 0.55	58.0 58.0 0.55	19.8 19.8 0.19	14.3 14.3 0.14	$14.3 \\ 14.3 \\ 0.14$	22.8 22.8 0.22	15.8 15.8 0.15	15.8 15.8 0.15
Clearance Time (s) Vehicle Extension (s)	3.0 5.0	6.0 5.0		3.0 5.0	6.0 5.0	6.0 5.0	3.0 5.0	7.0 5.0	7.0 5.0	3.0 5.0	7.0 5.0	7.0 5.0
Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm	192 c0.05 0.42	2808 0.32		224 0.05 0.38	1990 c0.61	881 0.08	260 0.02 0.04	260 0.06	215 0.01	295 c0.03 c0.07	282 0.03	240 0.01
v/c Ratio Uniform Delay, dl	0.77 26.2	0.58 15.6		0.70 11.9	1.11 23.6	0.14 11.5	0.31 36.4	0.47 42.0	0.07 39.7	0.47 35.0	0.23 39.4	0.06 38.4
Progression Factor Incremental Delay, d2 Delay (s)	1.00 19.8 46.0	1.00 0.9 16.5		1.00 11.4 23.3	1.00 56.6 80.2	1.00 0.3 11.9	1.00 1.4 37.8	1.00 2.7 44.7	1.00 0.3 40.0	1.00 2.4 37.4	1.00 0.9 40.3	1.00 0.2 38.6
Level of Service Approach Delay (s) Approach LOS	D	B 19.0 B		C	F 72.3 E	B	D	D 41.3 D	D	D	D 38.4 D	D
Intersection Summary HCM 2000 Control Delay HCM 2000 Volume to Capacity rati	2		48.9	HCM 20 0.93)00 Lev	el of S	Service					D
Actuated Cycle Length (s) Intersection Capacity Utilizatic Analysis Period (min) c Critical Lane Group			105.3 15	Sum of	E lost % ICU Le		s) Servic	e				19.0

G

Queues 108: Dixie Road & Mayfield Road 05/03/2018

Lane Group Lane Configurations	EBL 1	EBT 3	EBR 1	WBL 1	WBT 3>	WBR 0	NBL 1	NBT 1	NBR 1	SBL 1	SBT 1	SBR 1
Traffic Volume (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
Future Volume (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
Lane Group Flow (vph)	309	905	110	96	2064	0	603	583	194	40	125	558
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2	•	1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Detector Phase	5	2	2	1	6		4	4	4	8	8	8
Switch Phase												
Minimum Initial (s)	5.0	44.9	44.9	5.0	44.9		12.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	8.0	51.8	51.8	8.0	51.8		47.9	47.9	47.9	47.9	47.9	47.9
Total Split (s)	10.0	56.0	56.0	10.0	56.0		54.8	54.8	54.8	54.8	54.8	54.8
Total Split (%)	8.3%	46.4%	46.4%	8.3%	46.4%		45.4%	45.4%	45.4%	45.4%	45.4%	45.4%
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3		2.3	2.3	2.3	2.3	2.3	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Recall Mode	None	Max	Max	None	Max		None	None	None	None	None	None
v/c Ratio	1.80	0.46	0.15	0.31	1.04		1.21	0.77	0.26	0.33	0.17	0.82
Control Delay	402.4	27.2	4.6	17.5	66.0		144.0	39.6	4.9	34.5	24.4	35.5
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	402.4	27.2	4.6	17.5	66.0		144.0	39.6	4.9	34.5	24.4	35.5
Queue Length 50th (m)	~86.5	52.1	0.0	10.2	~178.0)	~160.2	108.9	1.3	6.0	17.4	84.3
Queue Length 95th (m)	#137.8	8 63.4	9.9	18.5	#205.3	3	#223.4	149.9	14.4	15.7	29.7	#135.4
Internal Link Dist (m)		1347.6	,		595.2			1218.9)		363.8	
Turn Bay Length (m)	240.0		150.0	230.0			210.0		125.0	175.0		220.0
Base Capacity (vph)	172	1955	722	306	1990		500	761	733	123	732	682
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	1.80	0.46	0.15	0.31	1.04		1.21	0.77	0.26	0.33	0.17	0.82

Intersection Summary Cycle Length: 120.8 Actuated Cycle Length: 120.8 Natural Cycle: 120 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Forecast 2041 PM Synchro 9 Report Page 0

.

HCM Signalized Intersection Capacity Analysis 108: Dixie Road & Mayfield Road 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3	1	1	3>	0	1	1	1	1	1	1
Traffic Volume (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
Future Volume (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1807	4812	1617	1789	4894		1772	1921	1570	1601	1847	1512
Flt Permitted	0.08	1.00	1.00	0.25	1.00		0.68	1.00	1.00	0.18	1.00	1.00
Satd. Flow (perm)	155	4812	1617	462	4894		1262	1921	1570	311	1847	1512
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	309	905	110	96	2049	15	603	583	194	40	125	558
RTOR Reduction (vph)	0	0	65	0	1	0	0	0	111	0	0	83
Lane Group Flow (vph)	309	905	45	96	2063	0	603	583	83	40	125	475
Heavy Vehicles (%)	1%	9%	1%	2%	7%	13%	3%	0%	4%	14%	4%	8%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	56.1	49.1	49.1	56.1	49.1		47.9	47.9	47.9	47.9	47.9	47.9
Effective Green, q (s)	56.1	49.1	49.1	56.1	49.1		47.9	47.9	47.9	47.9	47.9	47.9
Actuated g/C Ratio	0.46	0.41	0.41	0.46	0.41		0.40	0.40	0.40	0.40	0.40	0.40
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	167	1955	657	291	1989		500	761	622	123	732	599
v/s Ratio Prot	c0.11	0.19		0.02	0.42			0.30			0.07	
v/s Ratio Perm	c0.75		0.03	0.13			c0.48		0.05	0.13		0.31
v/c Ratio	1.85	0.46	0.07	0.33	1.04		1.21	0.77	0.13	0.33	0.17	0.79
Uniform Delay, dl	30.4	26.2	21.9	18.7	35.8		36.4	31.6	23.2	25.3	23.6	32.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	404.8	0.8	0.2	1.4	30.6		110.4	5.5	0.2	3.2	0.2	8.2
Delay (s)	435.2	27.0	22.1	20.1	66.5		146.8	37.0	23.4	28.5	23.8	40.3
Level of Service	F	С	С	С	Е		F	D	С	С	С	D
Approach Delay (s)		121.9			64.4			83.1			36.8	
Approach LOS		F			Е			F			D	
Intersection Summary												
HCM 2000 Control Delay			79.1	HCM 20	00 Lev	el of S	Service					Е
HCM 2000 Volume to Capacity rati	.0			1.55								
Actuated Cycle Length (s)			120.8	Sum of	lost	time (s	3)					16.8
Intersection Capacity Utilizatio	n			125.18	SICU Le	evel of	Servio	e				
Analysis Period (min)			15									
c Critical Lane Group												
-												

Н

Queues

109: Dixie Road & Countryside Drive 05/03/2018

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	1	1	2	1	1	1	1	1	1>	0
Traffic Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	43
Future Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	43
Lane Group Flow (vph)	18	164	49	94	356	109	103	574	133	58	464	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		1	1		
Detector Phase	2	2	2	2	2	2	1	1	1	1	1	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	36.6	36.6	36.6	36.6	36.6	
Minimum Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	43.2	43.2	43.2	43.2	43.2	
Total Split (s)	35.2	35.2	35.2	35.2	35.2	35.2	53.6	53.6	53.6	53.6	53.6	
Total Split (%)	39.6%	39.6%	39.6%	39.6%	39.6%	39.6%	60.4%	60.4%	60.4%	60.4%	60.4%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.2	4.2	4.2	4.2	4.2	
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2	3.2	2.4	2.4	2.4	2.4	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	
v/c Ratio	0.08	0.20	0.13	0.35	0.43	0.24	0.20	0.52	0.14	0.14	0.42	
Control Delay	23.5	24.5	7.9	28.8	27.4	6.4	10.0	12.5	2.3	9.7	10.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.5	24.5	7.9	28.8	27.4	6.4	10.0	12.5	2.3	9.7	10.9	
Queue Length 50th (m)	2.0	9.6	0.0	10.9	22.1	0.0	5.7	40.7	0.0	3.1	29.6	
Queue Length 95th (m)	6.4	16.2	6.9	22.1	32.4	10.0	16.6	84.6	7.0	10.3	63.1	
Internal Link Dist (m)		1345.4	1		805.1			1436.4	1		1218.9	9
Turn Bay Length (m)	150.0		140.0	120.0		150.0	190.0			150.0		
Base Capacity (vph)	366	1297	553	417	1285	637	515	1112	939	424	1103	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.13	0.09	0.23	0.28	0.17	0.20	0.52	0.14	0.14	0.42	

Intersection Summary Cycle Length: 88.8 Actuated Cycle Length: 79.1 Natural Cycle: 80 Control Type: Semi Act-Uncoord

HCM Signalized Intersection Capacity Analysis 109: Dixie Road & Countryside Drive 05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	1	1	2	1	1	1	1	1	1>	0
Traffic Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	43
Future Volume (vph)	18	164	49	94	356	109	103	574	133	58	421	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1822	3650	1475	1728	3614	1596	1825	1865	1484	1825	1844	
Flt Permitted	0.54	1.00	1.00	0.65	1.00	1.00	0.45	1.00	1.00	0.37	1.00	
Satd. Flow (perm)	1033	3650	1475	1179	3614	1596	864	1865	1484	710	1844	1 0 0
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	18	164	49	94	356	109	103	574	133	58	421	43
RTOR Reduction (vph)	0	0	38	0	0	84	0	0	54	0	4	0
Lane Group Flow (vph)	18	164	11	94	356	25	103	574	79	58	460	0
Confl. Peds. (#/hr)	2		37	37		2						
Heavy Vehicles (%)	0%	0%	6%	38	1%	0%	08	3%	10%	08	38	0 %
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2		2	2		2	1		1	1		
Actuated Green, G (s)	18.0	18.0	18.0	18.0	18.0	18.0	47.2	47.2	47.2	47.2	47.2	
Effective Green, q (s)	18.0	18.0	18.0	18.0	18.0	18.0	47.2	47.2	47.2	47.2	47.2	
Actuated g/C Ratio	0.23	0.23	0.23	0.23	0.23	0.23	0.60	0.60	0.60	0.60	0.60	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	235	831	336	268	823	363	516	1114	886	424	1101	
v/s Ratio Prot	255	0.04	550	200	c0.10	505	510	c0.31	000	121	0.25	
v/s Ratio Perm	0.02	0.04	0.01	0.08	0.10	0.02	0.12	C0.51	0.05	0.08	0.25	
v/c Ratio	0.02	0.20		0.35	0.43	0.02	0.12	0.52	0.09		0.42	
			0.03							0.14		
Uniform Delay, dl	24.0	24.7	23.7	25.6	26.1	23.9	7.3	9.2	6.8	7.0	8.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.3	0.2	0.1	1.7	0.8	0.2	0.9	1.7	0.2	0.7	1.2	
Delay (s)	24.3	24.9	23.8	27.3	26.9	24.1	8.1	11.0	7.0	7.6	9.7	
Level of Service	C	С	С	C	С	С	A	В	A	A	A	
Approach Delay (s)		24.6			26.4			9.9			9.5	
Approach LOS		С			С			A			A	
Intersection Summary												
HCM 2000 Control Delay			15.8	HCM 2	000 Lev	el of S	Service					В
HCM 2000 Volume to Capacity rati	lo			0.49								
Actuated Cycle Length (s)			79.0	Sum o	f lost	time (;	з)					13.8
Intersection Capacity Utilization	on			113.4	% ICU Le	evel of	Servio	ce				
Analysis Period (min)			15									
c Critical Lane Group												
-												

Н

Queues

110:	Dixie	Road	&	Sandalwood	Parkway	East	05/03/2018
------	-------	------	---	------------	---------	------	------------

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3>	0	1	3>	0	1	2	1	1	2	1
Traffic Volume (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
Future Volume (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
Lane Group Flow (vph)	338	1370	0	170	2961	0	353	855	299	80	584	664
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	3	8		7	4		1	6			2	
Permitted Phases	8			4			6		6	2		2
Detector Phase	3	8		7	4		1	6	6	2	2	2
Switch Phase												
Minimum Initial (s)	5.0	39.7		5.0	39.7		5.0	39.0	39.0	39.0	39.0	39.0
Minimum Split (s)	8.0	47.4		8.0	47.4		8.0	46.0	46.0	46.0	46.0	46.0
Total Split (s)	12.0	54.0		18.0	60.0		15.0	63.0	63.0	48.0	48.0	48.0
Total Split (%)	8.9%	40.0%		13.3%	44.4%		11.1%	46.7%	46.7%	35.6%	35.6%	35.6%
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	0.0	3.7		0.0	3.7		0.0	2.4	2.4	2.4	2.4	2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes			Yes	Yes	Yes
Recall Mode	None	Max		None	Max		None	None	None	None	None	None
v/c Ratio	1.87	0.76		0.70	1.48		1.02	0.58	0.38	0.47	0.54	1.14
Control Delay	436.1	42.0		42.2	250.0		85.4	32.3	8.2	49.1	41.5	116.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	436.1	42.0		42.2	250.0		85.4	32.3	8.2	49.1	41.5	116.9
Queue Length 50th (m)	~112.0	109.4		24.2	~368.1		~61.0	83.8	10.4	16.0	62.9	~162.5
Queue Length 95th (m)	#167.5	5 126.4		46.9	#390.9	9	#121.C	102.6	29.4	31.9	79.9	#230.3
Internal Link Dist (m)		672.7			108.6			503.1			1436.4	
Turn Bay Length (m)	150.0			130.0			125.0		125.0	120.0		120.0
Base Capacity (vph)	181	1793		260	2003		345	1484	779	170	1076	580
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	1.87	0.76		0.65	1.48		1.02	0.58	0.38	0.47	0.54	1.14

Intersection Summary Cycle Length: 135 Actuated Cycle Length: 135 Natural Cycle: 150 Control Type: Semi Act-Uncoord

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM S	Signal:	ized	Int	cersection	Capacity	Analysis	
110:	Dixie	Road	. &	Sandalwood	l Parkway	East	05/03/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	3>	0	1	3>	0	1	2	1	1	2	1
Traffic Volume (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
Future Volume (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1807	5059		1807	5161		1803	3579	1557	1807	3544	1555
Flt Permitted	0.08	1.00		0.08	1.00		0.28	1.00	1.00	0.30	1.00	1.00
Satd. Flow (perm)	160	5059		150	5161		534	3579	1557	563	3544	1555
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	338	1256	114	170	2854	107	353	855	299	80	584	664
RTOR Reduction (vph)	0	8	0	0	3	0	0	0	134	0	0	109
Lane Group Flow (vph)	338	1362	0	170	2958	0	353	855	165	80	584	555
Confl. Peds. (#/hr)	14		25	25		14	21		28	28		21
Heavy Vehicles (%)	1%	2%	28	1%	1%	08	18	28	0%	0%	3%	18
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	3	8		7	4		1	6			2	
Permitted Phases	8			4			6		6	2		2
Actuated Green, G (s)	56.6	47.6		64.3	52.3		56.0	56.0	56.0	41.0	41.0	41.0
Effective Green, g (s)	56.6	47.6		64.3	52.3		56.0	56.0	56.0	41.0	41.0	41.0
Actuated g/C Ratio	0.42	0.35		0.48	0.39		0.41	0.41	0.41	0.30	0.30	0.30
Clearance Time (s)	3.0	7.7		3.0	7.7		3.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	176	1783		239	1999		334	1484	645	170	1076	472
v/s Ratio Prot	c0.13	0.27		0.07	c0.57		c0.09	0.24			0.16	
v/s Ratio Perm	c0.67			0.27			0.34		0.11	0.14		c0.36
v/c Ratio	1.92	0.76		0.71	1.48		1.06	0.58	0.26	0.47	0.54	1.18
Uniform Delay, dl	35.8	38.7		29.7	41.4		36.1	30.4	25.9	38.2	39.2	47.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	434.5	3.2		11.7	218.6		65.0	0.9	0.4	4.3	1.0	99.7
Delay (s)	470.3	41.9		41.5	260.0		101.1	31.2	26.3	42.4	40.2	146.7
Level of Service	F	D		D	F		F	С	С	D	D	F
Approach Delay (s)		126.7			248.1			46.6			93.6	
Approach LOS		F			F			D			F	
Intersection Summary												
HCM 2000 Control Delay			154.8		000 Lev	el of S	Service					F
HCM 2000 Volume to Capacity rati	.0			1.51								
Actuated Cycle Length (s)			135.0		Elost		,					20.7
Intersection Capacity Utilizatio	n			162.78	lCU L€	evel of	Servic	e				
Analysis Period (min)			15									
c Critical Lane Group												

Н

HCM Unsignalized Intersection Capacity Analysis 111: Heart Lake Road & Heart Lake Conservation Area 05/03/2018

Movement Lanes Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade Peak Hour Factor	EBL 1 128 128 Stop 0% 1.00	EBT	EBR 0 0 0	WBL	WBT	WBR	NBL 0 110 110	NBT <1 382 382 Free 0% 1.00	NBR	SBL	SBT 0 0 Free 0% 1.00	SBR 0 0 0
Hourly flow rate (vph) Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh)	128		0				110	382			0	0
Median type Median storage veh) Upstream signal (m)								None			None	
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	602		0				0					
vCu, unblocked vol	602		0				0					
tC, single (s)	6.4		6.2				4.1					
tC, 2 stage (s)												
tF (s)	3.5		3.3				2.2					
p0 queue free %	71		100				93					
cM capacity (veh/h)	435		1091				1636					
Direction, Lane #	EB 1	NB 1										
Volume Total	128	492										
Volume Left	128	110										
Volume Right	0	0										
CSH	435	1636										
Volume to Capacity	0.29 8.5	0.07										
Queue Length 95th (m) Control Delay (s)	8.5 16.7	1.5 2.1										
Lane LOS	C 10.7	A A										
Approach Delay (s)	16.7	2.1										
Approach LOS	C											
Intersection Summary												
Average Delay			5.1									
Intersection Capacity Utilization	n				39.9%	ICU L	evel of	Servi	ce			
A												
Analysis Period (min)			15									

FUNCTION AND DESIGN REVIEW OF THE HEART LAKE ROAD CORRIDOR

Appendix E Sandalwood Intersection/Safety Review November 1, 2019

APPENDIX E

Sandalwood Intersection/Safety Review

T4-(

Report Committee of Council Committee of the Council of The Corporation of the City of Brampton

COMMITTEE OF COUNCIL
DATE: May 14, 2014

File: T35 SAFE

April 28, 2014

Subject: In-Service Safety Review – Various Signalized Intersections (Wards 1, 2, 3, 7, 9 and 10)

Contact: Nelson Cadete, Traffic Operations Supervisor, Traffic Engineering Services, Maintenance and Operations, 905-874-2552

Overview:

Date:

- Planning and Infrastructure Services staff identified the need to conduct Intersection safety reviews at the following signalized intersections:
 - Queen Street East and Chapel Street/Theatre Lane (Wards 1 and 3);
 - Heart Lake Road and Sandalwood Parkway (Wards 2 and 9);
 - MacKay Street South and North Park Drive (Ward 7); and,
 - Peter Robertson Boulevard and Torbram Road (Wards 9 and 10).
- Giffin Koerth Incorporated was retained to conduct the safety reviews at the four subject signalized intersections. Safety reviews are conducted to examine the safety performance of an intersection, identify engineeringrelated factors leading to an increased collision risk and to recommend solutions to these problems.
- Within this report, several countermeasures are identified and grouped by short term, medium term and long term actions.
- This report summarizes these initiatives and provides an update on the Implementation of these measures.

Recommendations:

- THAT the report from Nelson Cadete, Traffic Operations Supervisor, Maintenance and Operations Division, dated April 28, 2014, to the Committee of Council Meeting of May 14, 2014, re: In-Service Safety Review – Various Signalized Intersections be received; and,
- 2. THAT staff implement the collision reduction measures outlined within this report.

I4-2

Background:

Planning and Infrastructure Services staff has identified the following signalized Intersections that have experienced more than expected number of collisions when compared to other similar intersections within the City:

- Queen Street East and Chapel Street/Theatre Lane (Wards 1 and 3);
- Heart Lake Road and Sandalwood Parkway (Wards 2 and 9);
- MacKay Street South and North Park Drive (Ward 7); and,
- Peter Robertson Boulevard and Torbram Roed (Wards 9 and 10).

These intersections were identified by comparing collision statistics at similar Intersections throughout the city to develop a number of collisions that can be expected to occur for each of the following classifications and than comparing the actual collision totals to the expected values.

A safety review was conducted at the four subject intersections by an independent. Transportation Engineering Consultant.

Current Situation:

The objectives of intersection safety reviews are to examine the safety performance of an intersection, to identify engineering-related factors leading to an increased collision risk and to recommend solutions to these problems. Gliffin Koerth Incorporated was reteined to conduct the safety reviews at the four subject signalized intersections.

The following table (Table 1: Dominant Collision Trends and Contributing Factors) summarizes safety-related characteristics identified during the study that are contributing to a specific collision pattern and key in the development of appropriate corrective measures:

Table 1: Dominant Collision Trends and Contributing Factors

int.	Dominant Collision Trends	Contributing Factors		
Oueen Street East /Chapel Strast/Theatre Lane	Westbound rear and collisions	 Significent difference in operating speed along Queen Street, east end wast of the intersection. This is attributed to the subject intersection being the first for westbound traffic where the cross- section does not include exclusive turn lenss and where on-street parking is introduced, 		
		 The westbound shared left turn/through lane and on-street parking weat of the intersection require westbound drivers to weave at the approach to the intersection and then again after the intersection. 		
		 The size and location of the "Rose Theatre Brampton" guide sign provides fittle advance warning. 		
an Street Eas		 Municipal parking Information signs are non-standard and provide too much information (i.e. pricing) and may be taking driver's attention away from the aforementioned challenges at the intersection. 		
8	-	 The standard street name sign blades may not be providing sufficient advance notice for the prevailing operating speeds. 		
Heart Lake Road and Sandelwood Parkway	Eestbound rear end collisions	 The vertical alignment of Sandalwood Parkway through the intersection limits the forward visibility for eastbound traffic reacting to a downstream quaue of slowing vehicles turning into the fusi- station (southeast corner) and the subsequent Highway 410 on ramp. 		
	Westbound left turning traffic and opposing eastbound through treffic	Westbound left turning vehicles may be misled into assuming that the eastbound curb lane is a dedicated right turn lane that leads intr the channelized right turn. The eastbound curb lane accommodates both right tuning and through traffic, however a right turn channel island ramains in place from the previous intersection configuration (prior to the extension of Sendalwood Parkway).		
		 The view of approaching vehicles in the curb lane from the westbound left turn line may be occluded by eastbound vehicles in Lanes 1 and 2. The east-west vertical alignment through the Intersection exacerbates these sight line issues. 		
		 Faster moving vehicles in the eastbound curb lane may surprise weetbound left turn vehicles that are tracking and selecting a gap in slower moving vehicles in Lane 1 and 2. 		
		 The development of the third lane approximately 100 m west of the intersection allows these speed differentials during the off peak periods. 		

int.	Dominant Collision Treada	Contributing Factors		
MacKay St. S/ North Park Dr.	No dominant collision trend identified.	Not applicable.		
Peter Robertson Bivd./ Torbrem Rd.	Right angle and left turn opposing collisions in all directions.	 The westbound advance street name sign is not present for the westbound approach. For the east/west approaches to the intersection, there is a significant variation in the length of traffic signal green time when a padestrian pushes the push button versus times when it is not pushed. This variation in green time may be leading to an expectancy violation for frequent users of the intersection. 		

Table 1: Dominant Collision Trands and Contributing Factors (continued)

The safety review also identified a number of potential hazards that may not be contributing to a specific collision concern however are deficiencies in safety, operations and positive guidance at the subject intersections. Table 2: Potential Hazards below provides a summary of the potential hazards at each location:

Table 2: Potential Hazards

Intersection	Potential Hazard		
Queen Street East and Chapel Street/Theatre Lane	 No orientation channels (for visually impaired) provided at the intersection. Dameged pedestrian button information placards. Pedestrian too trip hazards were identified on the south west corner associated with paving stones that had settled at a different elevation that the surrounding concrete. 		
Heart Lake Road and	 Padestrian curb ramp and orientation channels on the southeast corner, do not direct pedestrian to available east-west crosswalk 		
Sendelwood Perkway	 No orientation channels (for visually impaired) provided on the northwest corner for north-south crossing and northeast corner for the east/west crossing. 		
è - 0	 Damaged pedestrian button information placards. 		
	 Improper use of CHEVRON ALIGMENT signs to designate a lane drop. These signs are intended to designate sharp curves or turns. 		

I4-5

Table 2: Potential Hazards (continued)

Intersection	Potential Hazard	
MacKay Street South and North	 No orientation channels (for visually impaired) provided on the southwest corner for east-west crossing 	
Park Drive	No orientation channels (for visually impaired) provided on the northeast comer (or either crossing	
	 Damaged padestrien button information placards 	
	 As you approach the intersection, the visibility of the southbound signal heads are impeded by mature tree growth on the inside cure approach to the intersection. 	
Pater Robertson Boulevard and Torbram Road	There were no potential hazards identified at the intersection.	

Taking into consideration the consultant's recommendations, staff recommends the following corrective measures at the subject intersections. The measures have been categorized into the following improvement strategies based on the urgency of implementation:

- Immediate Actions include countermeasures that should be implemented soon after the road agency is made aware of the issues. Examples include requests for speed enforcement and sight line obstructions.
- Short-Term Actions include relatively inexpensive countermeasures that could be implemented in the short-term, and that could be funded from operational or maintenance budgets. Examples include adding or upgrading signs, re-marking faded pavement markings, and correcting potential hazards (i.e. toe trip hazards).
- Medium-Term Actions include relatively more expensive countermeasures that may require design work and possibly the acquisition of right-of-way. Examples include the provision of a left-turn lane, removing major road-aide obstacles, and installing a new signal.
- Long-Term Actions include relatively expensive countermeasures that may require long-term planning, design, and extensive public consultation. Examples include twinning e road segment, providing grade separation, or re-aligning a road.

I4-6

Table 3: Recommended Countermeasures and Remedial Treatments

Co	ilision Trend/Safety Issue	Recommended Improvements	Retionale	Time Frame
Queen Street East and Chapel Street/Theatre Lans	Westbound rear and collisions	Delineate the beginning of the westbound on-street parking on the far elde of the intersection and post a westbound lane ends sign.	Provide advance warning for lane drop that occurs due to on-street parking.	Short Term
		Implement dedicated eastbound and westbound left turn lanes and a westbound right turn lane. See Figure 1 attached.	Supplement the lane drop configuration of the far aide of the intersection and reduce rear end and sideswipe collisions.	Medium Term
		Request speed enforcement for westbound traffic approaching the intersection.	Increase perception-reaction times for intersection and lane drop.	Immediate Action
		Improve westbound theatre and parking related guide signs.	Reduce reading and comprehension times for westbound motorists.	Short term
	Pedestrian toe trip hazards	Address the tos trip hazard on the southwest corner.	Reduce trip and fall hazards for pedestrians	Short team
Heart Lake Road and Sandalwood Parkway	Eastbound rear and collisions	Request speed enforcement for eastbound traffic approaching the intersection.	Reduce potential for eastbound rear and collisions.	Immediate Action
		Reconstruction of intersection and/or the approaches to reduce the vertical grades.	Improve visibility through the intersection.	Long Term (204 years)
	Westbound left tuming traffic and opposing castbound through traffic	Implement stop ber detection for westbound left turn movements.	Reduce collision potential between westbound left and eastbound through vehicles.	Short form
	Misaligned pedestrian curb ramp/crosswalk	Re-align south crosswalk to property accommodate east/west pedestrians.	Improve guidance for visually Impaired users.	Short term

Table 3: Recommended Countermeasures and Remedial Treatments	(continued)
--	-------------

Collision Trend/Safety lasue		Recommended Improvements	Rationale	Time Frame	
Heart Lake Rd. and Sandalwood Pkwy.	Improper use of CHEVRON ALIGMENT signs to designate a lane drop	Replace CHEVRON ALIGNMENT signs with white post mounted delineators.	Improve motorist comprehenaion of the road alignment (shift) Compliance with OTM-	Short term	
Peter Robertson Blvd. and Torbram Rd.	Right angle and left turn opposing collisions in all directions.	Modify the minimum side street signal green phase to 34 seconds for a vehicle call.	Improve consistency of side street graen phase under varied operating conditions	Completed	
MacKay St. S. and North Park Dr.	MacKay Street South and North Park Drive - visibility of the southbound signal heads	Install southbound tertiary signal head on the southeast comer of the intersection.	Improve southbound visibility of traffic signal control presence and status on the approach to the intersection.	Completed	
All Intersections	Missing crientation channels provided at the intersection	Reconstruct the surface of all pedestrian approaches to incorporate orientation channels at crosswalks.	Improve guidance for visually impaired users.	Short Term	
All Inte	Damaged pedestrian button information placarda.	Replace placards.	Provide positive guidance for pedestrians.	Short Term	

Two of the aforementioned mitigating measures have been completed as an Intersection Improvement under the existing maintenance contract for the City's traffic control signals. The request for speed enforcement on Queen Street East and Sandalwood Parkway has been identified as an immediate action item.

The corrective measures identified within the "Short Term" time frame will be implemented over the course of the Spring/Summer (2014) and the date of completion will be dependent on the complexity of the improvement.

14-8

The reconstruction of Heart Lake Road and Sandalwood Parkway to eliminate the vertical grades has been identified as a "Long Term" measure. The intersection was reconstructed in 2009. There a number of topographical and property constraints in the immediate vicinity of the intersection including Highway 410, a watercourse, and established residential and commercial uses. The extent of the existing vertical grade change and potential impacts on the existing uses creates a condition, where full reconstruction costs could be well in excess of a 1 or 2 million dollars and would be a long term improvement in the order of 20+ years. For this reason, more economical and near term improvements are proposed.

At the intersection of Queen Street East and Chapel Street/Theatre Lane, staff recommends modifying the eastbound and westbound lane configuration to include exclusive left turn lanes. Figure 1 attached, Illustrates the recommended improvement. The introduction of the exclusive left turn lanes will minimize the number of vehicles having to unexpectedly stop or weave at the intersection. The exclusive lanes also provide the opportunity to introduce advance left turns for eastbound and westbound traffic in the future, if required. This intersection improvement has been identified as a "Medium Term" measure as public consultation is required with downtown stakeholders.

Corporate Implications:

Financial Implications:

All costs associated to the immediate action items, the short term mitigating measures and the intersection improvements at Queen Street East and Chapel Street/Theatre Lane will be funded by the Departmental Operating Budget.

Other Implications:

The Intersection Improvements recommended for Queen Street East and Chapel Street/Theatre Lane will Impact the number of available on-street parking along the south side of the road (an approximate loss of 3 parking spaces). Prior to implementation, staff will consult the appropriate downtown stakeholders (including Brampton Downtown Development Corporation and the Office of the Central Area).

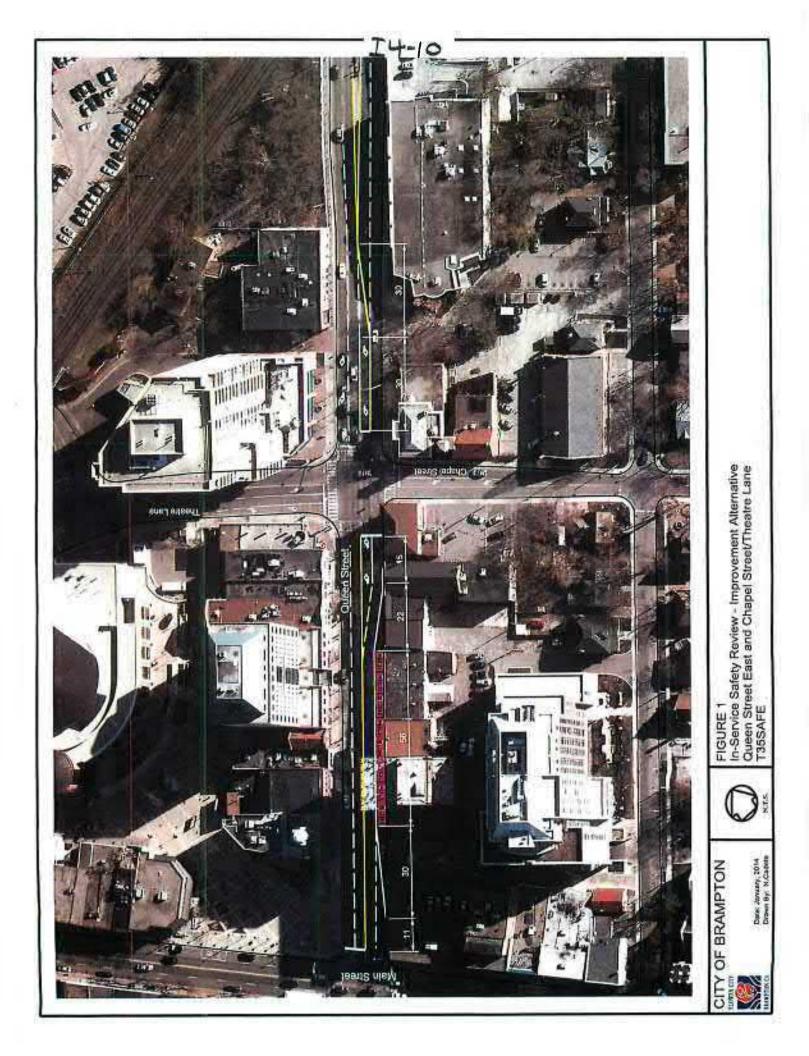
Strategic Plan:

This report achieves the Growth Management Priority of the Strategic Plan by Improving the roadway network to move people more efficiently.

Conclusion:

The recommended mitigating measures contained within this report will improve the safety and efficiency of the subject intersections. Staff will ensure that all corrective measures are implemented within the time frames outlined above.

Nelson Cadete, Supervisor, Traffic Operations Roads Maintenance and Operations


J.J. Pitushka, P.Eng., Executive Director, Maintenance and Operations

Appendices:

Figure 1: Improvement Alternete - Queen Street East and Chapel Street/Theatre Lane

Report authored by: Nelson Cadele, Traffic Operations Supervisor, Maintenance and Operations Division

ſ	ł	ÇI	2	8	C	1
Γ	4		ķ	2	3	
1	10		ī	1	F	11

FUNCTION AND DESIGN REVIEW OF THE HEART LAKE ROAD CORRIDOR

Appendix F Geotechnical Reports November 1, 2019

APPENDIX F

Geotechnical Reports

Geotechnical Investigation Report

Heart Lake Road Corridor Sandalwood Parkway to Mayfield Road Brampton, Ontario

Prepared for: City of Brampton 2 Wellington Street West Brampton, ON L6Y 4R2

Prepared by: Stantec Consulting Ltd. 100-300 Hagey Boulevard Waterloo, ON N2L 0A4

Project No. 165001037

December 1, 2017

Table of Contents

1.0		1
2.0	SITE DESCRIPTION	1
3.0	PROJECT DESCRIPTION	1
4.0	BACKGROUND INFORMATION	2
5.0 5.1 5.2 5.3	METHOD OF INVESTIGATION PREPARATORY SERVICES GENERAL INVESTIGATION PROGRAM & PROCEDURES GEOTECHNICAL LABORATORY TESTING PROGRAM.	2 3
6.0 6.1 6.2	SUBSURFACE CONDITIONS OVERVIEW SUMMARY 6.2.1 Overburden 6.2.2 Groundwater	4 4 4
7.0 7.1 7.2 7.3 7.4 7.5 7.6	DISCUSSION AND RECOMMENDATIONS OVERVIEW ROAD EMBANKMENT FILL PRELIMINARY PAVEMENT DESIGN FOR BIKE LANES BIKE TRAILS AND BOARDWALK WILDLIFE CROSSINGS 1 RECOMMENDATIONS FOR ADDITIONAL GEOTECHNICAL INVESTIGATION 1	7 8 0 1
8.08.18.29.0	CONSTRUCTION 1 EXCAVATIONS 1 REUSE OF EXCAVATED MATERIAL 1 CLOSURE 1	2 2
LIST O	F TABLES	-
Table	5.1: Geotechnical Laboratory Testing Program	3

Table 5.1:	Geotechnical Laboratory Testing Program	3
Table 6.1:	Grain Size Distribution of the Sand With Silt and Gravel Fill	5
Table 6.2:	Grain Size Distribution of the Clay with Sand Till	6
Table 6.3:	Atterberg Limits of the Sandy Clay Till	6
Table 7.1:	Preliminary Consolidation Estimates	8
Table 7.2:	Overview of Light Weight Fill Options	9
Table 7.3:	Recommended Pavement Structure1	0

LIST OF APPENDICES

- APPENDIX A Statement of General Conditions
- APPENDIX B Key Plan Borehole Location Plan
- APPENDIX C Symbols and Terms Used on the Borehole Records Stantec Borehole Records Engtec Borehole Records
- **APPENDIX D** Drawings from Previous Geotechnical Investigation Reports
- **APPENDIX E** Laboratory Testing Results

1.0 INTRODUCTION

Stantec Consulting Ltd. (Stantec) was retained by the City of Brampton to undertake a 30% design of the Heart Lake Road Corridor Improvement between Sandalwood Parkway and Mayfield Road in Brampton, Ontario. The improvements will likely comprise construction of bike lanes adjacent to the road. Wildlife crossings may also be added.

This report presents the results of the geotechnical investigation to support 30% design at this site. The scope of the field program did not include any environmental or hydrogeological testing. Additional geotechnical investigation is recommended to support final design.

Use of this report is subject to the Statement of General Conditions provided in Appendix A.

2.0 SITE DESCRIPTION

The study area for the road improvements is along the Heart Lake Road Corridor between Sandalwood Parkway and Mayfield Road. For the purposes of this report descriptions will be given assuming Heart Lake Road runs in a north-south direction. A Key Plan showing the location of the site is provided in Drawing 1 in **Appendix B**.

Heart Lake Road is a two-lane asphalt paved road with gravel shoulders. The Heart Lake Road corridor is bounded by the Heart Lake Conservation area on the west, and primarily undeveloped or agricultural land on the east. There are also a few commercial or residential properties on the east side of the road. A number of low-lying marshy areas are adjacent to the road, particularly in the south-most two thirds of the area investigated. Based on a review of aerial satellite imagery low lying marshy areas encompassed approximately 50% to 60% of the land areas adjacent to Hart Lake Road within the project limits.

3.0 PROJECT DESCRIPTION

As noted in Section 1 above the project design is still in the initial stages and is at the 30% design phase. The proposed project may include the addition of bike lanes on both the east and west sides of Hart Drive, potential intersection improvements and the addition of wild life crossings.

The bike lanes will likely be constructed on the edge of the existing road embankments which will require widening in the order of 3.0 m to accommodate the new lanes. The existing embankment is approximately 1.0 m to 4.0 m higher than the surrounding grades, however the topographic elevations of the site were not available at the time of preparation of this report.

4.0 BACKGROUND INFORMATION

Geotechnical reports were prepared by Engtec Consulting Inc. (Engtec) in 2015 for proposed wildlife crossing culverts. The reports were completed under Engtec Project Number ET15-1135A, and were dated August 25 and November 19, 2015.

The August 25, 2015 report investigated soil and groundwater conditions at one proposed wildlife crossing culvert located about 60 m north of the Heart Lake Conservation Area entrance. The November 19, 2015 report investigated soil and groundwater conditions at three proposed wildlife crossing culvert locations between the Heart Lake Conservation Area entrance and Counrtyside Drive.

The Engtec boreholes were advanced on the travelled lanes or gravel shoulders of Heart Lake Road. The boreholes typically encountered pavement structure and approximately 1 to 5 m of sandy silt/silty sand fill typically overlying peat. The peat was recorded as being up to 1.5 m thick. Approximately 2 m of organic silt was encountered below the peat in the boreholes from the August 25, 2015 report. Native deposits ranging from silty sand to clay till were encountered below the fill, peat, and organic silt. Some of the native soils were very soft based on the results of Standard Penetration Tests (SPTs).

The borehole logs from the above-noted Engtec investigations are provided in **Appendix C**. The approximate locations of the boreholes from the August 25, 2015 report are shown on the Borehole Location Plan in **Appendix B**. The Engtec drawing showing the location of the boreholes from their November 19 report is provided in **Appendix D**.

Conceptual site plan drawings, plan and profile drawings, and existing topographic survey information were not available at the time of preparation of this report.

5.0 METHOD OF INVESTIGATION

5.1 PREPARATORY SERVICES

The following preparatory services were undertaken in advance of the drilling program:

- Site visits were undertaken to: identify the preferred locations for the intended boreholes; confirm any access and mobilization constraints associated with the intended investigation borehole locations; and, meet the utility locate companies (see below).
- Proposed borehole locations were provided to the client and property owners, including the TRCA, for approval;
- Ontario One-Call was contacted to identify the locations of all public utilities in the area of the planned investigation boreholes.
- A private utility locate company was retained to scan the investigation hole locations and mark any buried utilities identified.

December 1, 2017

5.2 GENERAL INVESTIGATION PROGRAM & PROCEDURES

The following field procedures were employed during the geotechnical investigation:

- Six boreholes (BH01-17 through BH06-17) were advanced on November 8 and 9, 2017, using a track-mounted CME 55 drill rig operated by Geo-Environmental Drilling Inc. Boreholes locations are shown on the Borehole Location Plan provided in **Appendix B**.
- The boreholes were advanced near the toe of the existing embankment and/or on the travelled lanes of the road, near the granular shoulders.
- Standard Penetration Tests were conducted in the boreholes in accordance with the methods described in ASTM D1586;
- Soil samples were collected from the boreholes at regular 0.76 and 1.5 m intervals using split spoon samplers. The soils were logged (visually classified), including texture and composition of materials.
- Shelby tube samples were taken of selected organic or soft soil deposits encountered in the boreholes;
- The groundwater conditions in the open boreholes were recorded at the time of and immediately following completion of the drilling program.
- The boreholes were backfilled with a mixture of the auger spoils and granular bentonite, to provide a low-permeability backfill consistent with the requirements of O.Reg. 903, as amended. Boreholes drilled in the travelled lanes of the road were capped with well-compacted asphalt cold patch.

5.3 GEOTECHNICAL LABORATORY TESTING PROGRAM

The geotechnical laboratory testing program completed on samples obtained from the investigation is outlined in Table 5.1 below.

Table 5.1. Geolechnical Laboratory Testing Program				
Laboratory Test	Sampling Frequency/Number			
ASTM D2216 - Moisture Content	Select samples obtained from the boreholes			
ASTM D422/D – Grain Size/Hydrometer	3			
ASTM D4318 – Atterberg Limits	1			
ASTM D2435M (modified) – Consolidation Analysis	1			

Table 5.1: Geotechnical Laboratory Testing Program

The laboratory test results are summarized in the text of this report. The results of moisture content tests are also shown on the borehole logs in **Appendix C**. The results of grain size analysis, Atterberg limits, and consolidation testing are provided in **Appendix E**.

Classification of the soil samples encountered in the investigation (and as referenced in the geotechnical report) will be in accordance with ASTM D2487 "Standard Test Method for Classification of Soils for Engineering Purposes", consistent with the Unified Soil Classification System.

6.0 SUBSURFACE CONDITIONS

6.1 OVERVIEW

The various soil strata and groundwater conditions, encountered in the investigation are summarized in the sections below.

The soils have been classified in accordance with the Unified Soil Classification System, with minor modifications consistent with the methods of the MTO, including the removal of the descriptions "lean" and "fat" with reference to clay soils, and including a "Medium" category with respect to plasticity. Reference is also made to the Canadian Foundation Engineering Manual (4th Edition – 2006) where used for purposes of description and classification.

6.2 SUMMARY

Two boreholes (BH01-17 and BH06-17) were completed on the road, with the remaining boreholes completed adjacent to the road. In general, the boreholes on the road encountered pavement structure and road embankment fill. Buried peat was encountered below the embankment fill in BH01-17. Boreholes adjacent to the road encountered fill, topsoil or organic clay/peat at ground surface. The native mineral soils encountered below the fill, topsoil, and peat generally ranged from clay with sand till to sandy silt till.

The borehole records are included in **Appendix C** and the results of the results of the geotechnical laboratory testing, as reported herein, are included in **Appendix E**.

6.2.1 Overburden

6.2.1.1 Pavement Structure

Pavement structure was encountered at ground surface at boreholes BH01-17 and BH06-17, which were completed on the travelled lanes of Heart Lake Road. At BH01-17 the pavement structure comprised 140 mm of asphaltic concrete overlying 220 mm of granular fill. At BH06-17 the pavement structure comprised 430 mm of asphalt.

It is noted that the boreholes completed during the previous investigations by Engtec encountered 240 to 245 mm of asphalt and 200 to 700 mm of granular fill materials.

6.2.1.2 Fill

Fill was encountered below the pavement structure in BH01-17 and BH06-17. Possible fill was also encountered adjacent to the road in BH03-17.

At BH01-17 and BH06-17 the fill is 0.4 to 0.8 m thick and comprised sand with silt and gravel. A particle size distribution test was conducted on a sample of the fill from BH06-17. The results are summarized below in Table 6.1, and are also provided on Figure 1 in **Appendix E**.

December 1, 2017

Borehole No.	Sample No.	Depth (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH06-17	SS1	0.3	40	51	7	2

SPT N-values ranging from 8 to 34 blows per 300 mm penetration of a split spoon sampler indicated that the fill in BH01-17 and BH06-17 has a variable loose to dense relative density. Moisture contents of 4 to 12%, indicate the fill is damp to wet.

Possible fill at BH03-17 ranged from sandy clay to silty sand, and extended to a depth of 2.3 m below existing grades. This deposit is loose to compact based on SPT N-values of 6 to 14.

It is noted that fill below the pavement structure in the Engtec boreholes extended up to 4.7 m below the road surface. The fill composition described by Engtec is generally consistent with the fill encountered in BH01-17 and BH06-17. The lower portions of the deep fill became loose based on the SPT results reported by Engtec.

6.2.1.3 Peat and Other Organic Soils

A deposit of silty clay with organics was encountered at ground surface in BH05-17 and extended to 0.7 m depth. This deposit was soft based on a SPT N-value of 2; and, Wetter Than the Plastic Limit, based on a moisture content of 47%.

Peat was encountered below the fill at 1.2 m depth in BH01-17; and below the silty clay with organics at 0.7 m depth in BH05-17. The peat deposit is black and fibrous with moisture contents of over 100%. The peat was 0.7 to 1.0 m thick in the boreholes for the current investigation.

A sample of the peat from BH05-17 was submitted for consolidation testing (ASTM D2435M modified for stress and load duration) at the Golder Associates Geotechnical Laboratory located in Mississauga, ON. The results of the consolidation testing are provided in **Appendix E**. The results indicate that the coefficient of Consolidation (vertical) varied from 1.95x10⁻³ to 1.27x10⁻² cm²/s; and the coefficient of volume compressibility varied from 9.65x10⁻⁴ to 1.70x10⁻³ m²/kN.

Peat is also identified at depths of 1.1 to 4.7 m below ground surface under road fill in boreholes BH1, BH2, BH101, BH102, BH301, and BH302 from the Engtec investigations. These peat deposits were measured to range in thickness from 0.8 m to 1.6 m thick.

The Engtec investigations also identified organic silt (marl) below the peat in BH1 and BH2. This deposit was measured to be 2.0 to 2.1 m thick, and was comprised of silt with trace sand and shells; and, was very loose based on SPT N-values of 1 to 3; and very wet based on moisture contents of over 70%.

December 1, 2017

6.2.1.4 Silty Clay (CL)

Silty Clay was encountered below the peat at 1.4 m depth in BH05-17. This deposit extended below the termination depth of the borehole. The silty clay was firm based on SPT N-values of 4; and about the plastic limit based on moisture contents of 11 to 13%.

It is noted that silty clay was also encountered below road fill and peat at 5.6 m depth in Engtec boreholes 301 and 302. At that location, the silty clay extended to depths more than 12 m below grade and was very soft.

6.2.1.5 Clay with Sand (CL) Till

Clay with sand till was encountered below the fill and peat in boreholes BH01-17 through BH04-17. Where it was encountered, this deposit extended below the termination depths of the boreholes.

A grain size analyses was completed on a sample of the clay with sand till. The results are summarized below in Table 6.2, and are also shown on Figure 1 in **Appendix E**.

Borehole No.	Sample No.	Depth (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH01-17	SS5	2.9	4	23	41	32

Table 6.2: Grain Size Distribution of the Clay with Sand Till

Atterberg Limits tests were also completed on a portion of the samples referenced above. The results of the tests are summarized below in Table 6.3.

Table 6.3: Atterberg Limits of the Sandy Clay Till

Borehole No.	Sample No.	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index
BH01-17	SS5	2.9	25	13	12

The results of the Atterberg Limits tests are illustrated on Figure 2 in Appendix E.

SPT N-values for the clay with sand till ranging from 4 to 16 indicates this deposit has a firm to stiff consistency. Moisture contents of the sandy clay till ranged from 10 to 18%, indicating the material ranges from about the plastic limit to wetter than plastic limit.

6.2.1.6 Sandy Silt with Gravel (SM) Till

A deposit of sandy silt with gravel till was encountered below the pavement structure and fill in BH06-17 at 0.8 m depth. This deposit extended below the termination depth of the borehole. SPT N-values of 12 to 41 indicate that the sandy silt with gravel till is compact to dense. A 1.2 m thick sand seam was encountered within the sandy silt with gravel deposit at 2.3 m depth.

December 1, 2017

6.2.2 Groundwater

Free groundwater was encountered at 2.0 m depth in BH03-17, 2.7 m depth in BH04-17, and 2.6 m depth in BH05-17. The groundwater is present in seams within the clay with sand till and silty clay deposits. It should also be expected that groundwater may be perched in peat deposits above the silty clay and glacial till. Seasonal fluctuations in the groundwater levels should be expected.

7.0 DISCUSSION AND RECOMMENDATIONS

7.1 OVERVIEW

The geotechnical investigation was undertaken to support a 30% design of the Heart Lake Road Corridor Improvement between Sandalwood Parkway and Mayfield Road in Brampton, Ontario. The improvements will likely include construction of bike lanes adjacent to the road. Wildlife crossings may also be added.

As noted in Section 3.0 above, site plans, plan and profile drawings and site elevations were not available at the time of preparation of this report. In this regard, it has been assumed that the implementation of the bike lanes will include road widening in the order of 3.0 m with a maximum embankment height of 4.0 m. The wildlife crossings will be constructed at the grade of the adjacent land areas at the toe of the road embankment.

Two boreholes (BH01-17 and BH06-17) were completed on the road, with the remaining boreholes completed adjacent to the road. In general, the boreholes on the road encountered pavement structure and road embankment fill. Buried peat was encountered below the embankment fill in BH01-17. Boreholes adjacent to the road encountered fill, topsoil or organic clay/peat at ground surface. The native mineral soils encountered below the fill, topsoil, and peat generally ranged from clay with sand till to sandy silt till.

The peat deposits were 0.7 to 1.6 m thick where encountered. Previous geotechnical investigations also encountered marl and very soft clay deposits below the peat. Based on a review of aerial satellite imagery low lying marshy areas encompassed approximately 50% to 60% of the land areas adjacent to Hart Lake Road within the project limits. In this regard, it is anticipated that organic soils will be encountered within these areas.

Groundwater is present in seams within the clay with sand till and silty clay deposits. It should also be expected that groundwater may be perched in peat deposits above the silty clay and glacial till. Seasonal fluctuations in the groundwater levels should be expected.

Consolidation settlement of the peat, marl, and soft clay should be expected where the road is widened to accommodate the new bike lanes. The amount of consolidation settlement, and time consolidation will occur over, will be dependent on the load produced by the new road embankment fill and the thickness of the compressible deposits. As noted above it is anticipated that the road embankment will range in height from 1 m to 4 m.

Although not initially intended, consideration can be made to relocating the proposed bike lanes onto trails and/or board walks adjacent to the road embankment at the existing ground surface elevations. The implementation of trails and board walks would impose less environmental impact and would require less overall effort than widening the existing road embankment.

7.2 ROAD EMBANKMENT FILL

It is understood that widening will be required to allow for construction of new bike lanes with embankments ranging from 1 m to 4 m in height. Where road widening occurs over low-lying marshy areas containing organic soils, consolidation settlement of the organic soils should be expected if they are left in-place. The amount of consolidation settlement, and time consolidation will occur over, will be dependent on the load produced by the new road embankment fill and the thickness of the compressible deposits.

Based on the results of consolidation testing conducted on peat deposits, the following preliminary estimates are provided for amount of settlement for various peat thicknesses and changes in overlying fill thicknesses. The following tables assume the new overlying fill has a unit weight of approximately20 kN/m³.

Load Increase	Estimated Settlement/Time for 90% Settlement/Time for 99% Settlement		
	1 m of peat	2 m of peat	
1 m grade increase	~65 mm/>25 days/>50 days	~130 mm/>100 days/>220 days	
2 m grade increase ~110 mm/>40 days/>80 days		~220 mm/>160 days/>330 days	
4 m grade increase	~165 mm/>55 days/>110 days	~330 mm/>210 days/>430 days	

Table 7.1: Preliminary Consolidation Estimates

It is noted that the estimates above are based on primary consolidation settlement. Secondary consolidation settlement will also occur over a substantially longer period of time.

The consolidation settlement can be eliminated by subexcavating the existing peat from below the new embankment fill. It is anticipated that this option may not be feasible as the peat is present under the existing road embankment. Attempts of subexcavate the peat from below the existing road embankment slopes would require significant subexcavation, and likely require closure of the road. It is noted that significant excavation would likely be required in the lowlying marsh areas in order to create temporary excavation slopes conforming with Ontario Regulations. We refer to Section 8.1 of this report for additional information on temporary excavation slopes.

Preloading can be conducted to reduce the effect of consolidation settlement on the new pavements over the widened area. Preloading involves the placement of fill and monitoring of settlement over a period of time to allow for consolidation of the underlying soils. The preloading period can be accelerated by adding a surcharge load of additional fill above the finished grade of the road embankment. A settlement monitoring program is recommended if preloading is done to determine the time rate and magnitude of settlement has occurred in the

December 1, 2017

embankments, and when it is suitable to construct the new pavements. This option will not eliminate consolidation, as secondary consolidation would be expected over a significantly longer period of time, resulting in increased need for pavement rehabilitation.

The amount of consolidation settlement can be reduced by reducing the amount of load increase produced by the new embankment fill. Theoretically, if a light weight fill material were utilized for the road widening, and the existing road embankment was subexcavated such that the weight of existing fill removed over any point was equivalent to the weight of the new (thicker) light weight fill placed over that point, there would be no net increase in load, and therefore no consolidation settlement. The following information on light weight fill is provided for consideration.

Material	Typical Unit Weight	Relative Material Cost	Remarks
Extruded Polystyrene (XPS)	0.5-1.0 kN/m ³	More expensive than EPS	Higher stiffness and thermal conductivity than EPS. Improved surface roughness. Most expensive option.
Expanded Polystyrene (EPS)	0.5-1.0 kN/m ³	Relatively Expensive	Excellent thermal performance. High compressive strength. Impervious to moisture. Recyclable
Blast Furnace Slag	11.5 – 14.5 kN/m³	Relatively Lower Cost to Other Light Weight Fill Options	Lightweight compacted density. High angle of internal friction. Approval generally required from local environmental agency.
Tire Derived Aggregate (TDA)	8 kN/m³	Relatively Lower Cost to Other Light Weight Fill Options	Good thermal insulation. High permeability. Absorbs vibration. Relatively newer technology.
Light Weight Foam Concrete	5 – 6 kN/m³	Moderate Cost	Good thermal insulation. Low permeability. Flowable material. Relatively newer technology.

Table 7.2: Overview of Light Weight Fill Options

If these materials are considered, the effect of these materials on embankment slope stability must be analysed. As well, the potential effects of these materials on the adjacent wetlands must be considered from an environmental perspective.

Where new road embankment fill is placed against the existing embankment fill, the existing road embankment must first be stripped of vegetation and surficial organic soils. The stripped surface should be inspected by geotechnical personnel to identify any areas were additional subexcavation is required. The existing slope must be benched during placement of new fill to improve the connection of the new fill against existing fill. If the new embankment fill comprises soil, it should be placed in maximum 300 mm thick lifts compacted to at least 95% standard Proctor maximum dry density. The side slopes of the embankments should be maximum 3 horizontal to 1 vertical where there are no organic soils or soft clay deposits below the

December 1, 2017

embankment. Where organic soils or soft clay do existing below proposed embankments, the required safe slope of the embankment must be determined through global stability analysis.

7.3 PRELIMINARY PAVEMENT DESIGN FOR BIKE LANES

As noted previously in the report the orientation and location of the bike lanes has not been finalized. If the bike lanes are to be constructed adjacent to the existing pavement structure the bike lane pavement structure should be designed to match the pavement structure of the travel lanes on Hart Lake Road. Understanding that a detailed pavement assessment has not been completed a preliminary pavement design based on the conditions encountered in the boreholes for this investigation, and considering the subsoil conditions encountered are provided in Table 7.3 below:

Pavement Layer	Pavement Structure
Asphalt	
Surface	50 mm OPSS HL-1 or SP12.5 FC2
Binder	150 mm OPSS HL8 or SP 19.0
Granular	
Base	150 mm OPSS Granular A
Subbase	450 mm OPSS Type II Granular B

Table 7.3: Recommended Pavement Structure

Prior to placement of the new pavement structure, the subgrade surface should be proof rolled and compacted to achieve a minimum of 95% SPMDD. Soft, wet, and/or disturbed materials should be sub-excavated to a depth of 0.5 m and replaced with OPSS Select Subgrade material compacted to 98% Standard Proctor maximum dry density, or thickened subbase.

The granular base and sub-base layers should be compacted in maximum lifts of 300 mm to achieve 100% SPMDD. Where soft subgrade conditions exist, lift thicknesses can be increased provided that adequate compaction is maintained.

The base and top course asphalt materials should be placed in single lifts to a maximum thickness of 75 mm and should be compacted to achieve the level of compaction specified in OPSS 310. Where the new asphalt is placed adjacent to existing asphalt, it is recommended that the existing asphalt be milled such that the cold joints against the existing asphalt of each layer are offset by at least 100 mm.

Proper drainage of the pavement structure must be provided in order to provide satisfactory performance. Due to the low permeability of the prevailing soils (clay with sand till) continuous sub-drains should be connected to catch basins, where catch basins are available. Where ditches are present beside the road, the bottom of the pavement granulars should slope at 2% towards the ditches to allow subsurface drainage.

December 1, 2017

7.4 BIKE TRAILS AND BOARDWALK

Although not initially intended, consideration can be made to relocating the proposed bike lanes onto trails and/or board walks adjacent to the road embankment at the existing ground surface elevations. The implementation of trails and board walks would impose less impact to the surrounding lands and would reduce the requirement to import significant volumes of fill to construct the road embankment.

The bike trails can be supported on a combination of asphalt pavements placed on the sound native soils and boardwalks supported on specialized foundations such as micro piles or helical piers. These types of foundations are typically proprietary technologies and would need to be reviewed by and/or design by a specialized contractor.

7.5 WILDLIFE CROSSINGS

It is understood that additional wildlife crossing culverts may be designed as part of the road improvements. The recommendations of the previous Engtec reports should be considered when designing wildlife crossings in the areas investigated by Engtec. Location-specific geotechnical investigations should be undertaken for any new proposed wildlife crossings. Details regarding additional geotechnical investigations are provided in 7.5 of this report.

7.6 RECOMMENDATIONS FOR ADDITIONAL GEOTECHNICAL INVESTIGATION

Additional geotechnical investigation is recommended to support final design.

Additional boreholes are recommended for the final design such that borehole spacing along the proposed bike paths is a maximum of 150 m.

It is recommended that additional investigation be conducted below proposed road widenings where those widenings will be over low-lying and/or marshy areas, and where the widening will result in additional loads on the existing soils. The purpose of those investigations should be to determine the potential for settlement and the timeline for consolidation settlement to occur, to allow the widening and pavements to be designed accordingly. Investigations must also be conducted to assess the global stability of any additional fill slopes placed over areas of organic soils. This investigation may require the use of specialized small drillrigs and/or hand drilling techniques to allow access into the marshy areas adjacent to the road.

Additional investigation is recommended if wildlife crossings are proposed at locations where borehole data is not currently available. This is particularly important as wildlife crossings are typically located where there is low-lying land adjacent to the road, and low-lying land can be indicative of the presence of organic soils. Design of wildlife crossing structures must take into account the presence of any organic soils.

December 1, 2017

8.0 CONSTRUCTION

8.1 EXCAVATIONS

All side slopes for temporary open-cut excavations should meet the requirements of the Occupational Health and Safety Act Regulations for Construction Projects (OH&S Act).

- The surficial fill materials as well as the native non-organic soil deposits can be considered Type 3 soils. In accordance with OHSA, these soils can be excavated to a maximum 1:1 (Horizontal: Vertical) slope from the base of excavation where workers enter the trench. Steeper excavations would require an engineered support system.
- Where peat and/or groundwater seepage are encountered in the excavation these must be considered Type 4 soils. The OH&S Act requires that excavations in Type 4 soils be excavated to a maximum of 3:1 (Horizontal: Vertical) slope where workers enter the trench. If the 3:1 slope cannot be achieved, a temporary support system must be provided to permit workers to enter the excavation.
- Where temporary excavations expose existing utilities, those utilities must be properly supported.
- Temporary excavations steeper than those noted above may be utilized provided a trench box is used to protect workers. The design and use of the trench box must meet the requirements Part 234 of Ontario Regulation 213/91.
- Some sloughing and caving must be anticipated for excavations in the fill materials and native silty sand soils, particularly where excess moisture (precipitation, ground surface runoff and the groundwater table) is present.

8.2 REUSE OF EXCAVATED MATERIAL

Existing Pavement Structure Components

Granular material from the existing pavement structure, including road shoulders, may be stockpiled and tested to determine if the material is suitable for re-use as OPSS Granular 'B' in any new pavement structures. If gradation results indicate that the existing granular material are not suitable for re-use in the new pavement structure, they may be utilized as road embankment fill (unless low weight fill is to be used), or as backfill for trenches or structures.

The existing asphaltic concrete should be removed from site, or subject to approval of the City of Brampton milled and mixed as RAP in the OPSS Granular 'B'. The asphaltic concrete should not be re-used in the road embankment fill or as backfill for trenches or structures.

Existing Fill Materials

Existing fill materials were encountered in the majority of the boreholes, and typically comprised sand with silt and gravel. These soils will not be suitable for use in pavement structure or other applications where free draining soil is required. The existing fill may be suitable for use as road embankment fill (unless low weight fill is to be used), or as backfill for trenches.

December 1, 2017

Peat, Other Organic Soils, and Soft Clay

Where excavated, peat, other organic soils, and soft clay will not be suitable for re-use as road fill or backfill, and should be removed from site.

Clay with Sand Till and Silty Clay

The native deposits of clay with sand till and silty clay should not be used in any applications where free-draining soils are needed. These materials may be suitable for use as road embankment fill (unless low weight fill is to be used), or as backfill for trenches. Drier portions of these materials may need additional effort and/or thinner lifts to allow proper break-down of any "blocky" portions and close all inter-lump voids. Failure to ensure no voids are left between lumps in the fill will result in settlement over time.

December 1, 2017

9.0 CLOSURE

Use of this report is subject to the Statement of General Conditions provided in **Appendix A**. It is the responsibility of the Client and its agents to review the conditions and to notify Stantec Consulting Ltd. should any of these not be satisfied. The Statement of General Conditions addresses the following:

- Use of the report
- Basis of the report
- Standard of care
- Interpretation of site conditions
- Varying or unexpected site conditions
- Planning, design or construction

Respectfully submitted,

STANTEC CONSULTING LTD.

Original signed by

Jeff Dietz, P. Eng. Senior Geotechnical Engineer (519) 585-3446 jeff.dietz@stantec.com

Original signed by

Peter Healy, C.E.T. Senior Associate, Geotechnical Engineering: (705)719-1813 peter.healy@stantec.com

m:\active\1650\165001037 - heart lake road\reports\rpt_165001037_geotech_heart-lake-road_20171130.docx

